Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import numpy as np | |
| import torch | |
| from PIL import Image, ImageDraw | |
| import gradio as gr | |
| from openai import OpenAI | |
| from geopy.geocoders import Nominatim | |
| from staticmap import StaticMap, CircleMarker, Polygon | |
| from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline | |
| import spaces | |
| # Initialize APIs | |
| openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY']) | |
| geolocator = Nominatim(user_agent="geoapi") | |
| # Function to fetch coordinates | |
| def get_geo_coordinates(location_name): | |
| try: | |
| location = geolocator.geocode(location_name) | |
| if location: | |
| return [location.longitude, location.latitude] | |
| return None | |
| except Exception as e: | |
| print(f"Error fetching coordinates for {location_name}: {e}") | |
| return None | |
| # Function to process OpenAI chat response | |
| def process_openai_response(query): | |
| response = openai_client.chat.completions.create( | |
| model="gpt-4o-mini", | |
| messages=[ | |
| { | |
| "role": "system", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": "\"input\": \"\"\"You are a skilled assistant answering geographical and historical questions. For each question, generate a structured output in JSON format, based on city names without coordinates. The response should include:\ | |
| Answer: A concise response to the question.\ | |
| Feature Representation: A feature type based on city names (Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection).\ | |
| Description: A prompt for a diffusion model describing the what should we draw regarding that.\ | |
| \ | |
| Handle the following cases:\ | |
| \ | |
| 1. **Single or Multiple Points**: Create a point or a list of points for multiple cities.\ | |
| 2. **LineString**: Create a line between two cities.\ | |
| 3. **Polygon**: Represent an area formed by three or more cities (closed). Example: Cities forming a triangle (A, B, C).\ | |
| 4. **MultiPoint, MultiLineString, MultiPolygon, GeometryCollection**: Use as needed based on the question.\ | |
| \ | |
| For example, if asked about cities forming a polygon, create a feature like this:\ | |
| \ | |
| Input: Mark an area with three cities.\ | |
| Output: {\"input\": \"Mark an area with three cities.\", \"output\": {\"answer\": \"The cities A, B, and C form a triangle.\", \"feature_representation\": {\"type\": \"Polygon\", \"cities\": [\"A\", \"B\", \"C\"], \"properties\": {\"description\": \"satelite image of a plantation, green fill, 4k, map, detailed, greenary, plants, vegitation, high contrast\"}}}}\ | |
| \ | |
| Ensure all responses are descriptive and relevant to city names only, without coordinates.\ | |
| \"}\"}" | |
| } | |
| ] | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "text", | |
| "text": query | |
| } | |
| ] | |
| } | |
| ], | |
| temperature=1, | |
| max_tokens=2048, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0, | |
| response_format={"type": "json_object"} | |
| ) | |
| return json.loads(response.choices[0].message.content) | |
| # Generate GeoJSON from OpenAI response | |
| def generate_geojson(response): | |
| feature_type = response['output']['feature_representation']['type'] | |
| city_names = response['output']['feature_representation']['cities'] | |
| properties = response['output']['feature_representation']['properties'] | |
| coordinates = [] | |
| for city in city_names: | |
| coord = get_geo_coordinates(city) | |
| if coord: | |
| coordinates.append(coord) | |
| if feature_type == "Polygon": | |
| coordinates.append(coordinates[0]) # Close the polygon | |
| return { | |
| "type": "FeatureCollection", | |
| "features": [{ | |
| "type": "Feature", | |
| "properties": properties, | |
| "geometry": { | |
| "type": feature_type, | |
| "coordinates": [coordinates] if feature_type == "Polygon" else coordinates | |
| } | |
| }] | |
| } | |
| # Generate static map image | |
| def generate_static_map(geojson_data): | |
| # Create a static map object with specified dimensions | |
| m = StaticMap(600, 600) | |
| # Process each feature in the GeoJSON | |
| for feature in geojson_data["features"]: | |
| geom_type = feature["geometry"]["type"] | |
| coords = feature["geometry"]["coordinates"] | |
| if geom_type == "Point": | |
| # Add a blue marker for Point geometries | |
| m.add_marker(CircleMarker((coords[0], coords[1]), 'blue', 10)) | |
| elif geom_type in ["MultiPoint", "LineString"]: | |
| # Add a red marker for each point in MultiPoint or LineString geometries | |
| for coord in coords: | |
| m.add_marker(CircleMarker((coord[0], coord[1]), 'blue', 10)) | |
| elif geom_type in ["Polygon", "MultiPolygon"]: | |
| # Add green polygons for Polygon or MultiPolygon geometries | |
| for polygon in coords: | |
| m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], 'blue', 3)) | |
| # Render the static map and return the Pillow Image object | |
| return m.render(zoom=10) | |
| # ControlNet pipeline setup | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16) | |
| pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| # ZeroGPU compatibility | |
| pipeline.to('cuda') | |
| def make_inpaint_condition(init_image, mask_image): | |
| init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0 | |
| mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0 | |
| assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size" | |
| init_image[mask_image > 0.5] = -1.0 # set as masked pixel | |
| init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2) | |
| init_image = torch.from_numpy(init_image) | |
| return init_image | |
| def generate_satellite_image(init_image, mask_image, prompt): | |
| control_image = make_inpaint_condition(init_image, mask_image) | |
| result = pipeline( | |
| prompt=prompt, | |
| image=init_image, | |
| mask_image=mask_image, | |
| control_image=control_image, | |
| strength=0.45, | |
| guidance_scale=62 | |
| ) | |
| return result.images[0] | |
| def get_bounds(geojson): | |
| coordinates = [] | |
| for feature in geojson["features"]: | |
| geom_type = feature["geometry"]["type"] | |
| coords = feature["geometry"]["coordinates"] | |
| if geom_type == "Point": | |
| coordinates.append(coords) | |
| elif geom_type in ["MultiPoint", "LineString"]: | |
| coordinates.extend(coords) | |
| elif geom_type in ["MultiLineString", "Polygon"]: | |
| for part in coords: | |
| coordinates.extend(part) | |
| elif geom_type == "MultiPolygon": | |
| for polygon in coords: | |
| for part in polygon: | |
| coordinates.extend(part) | |
| lats = [coord[1] for coord in coordinates] | |
| lngs = [coord[0] for coord in coordinates] | |
| return [[min(lats), min(lngs)], [max(lats), max(lngs)]] | |
| def generate_static_map(geojson_data, bounds=None): | |
| # Create a static map object with specified dimensions | |
| m = StaticMap(600, 600) | |
| if bounds: | |
| center_lat = (bounds[0][0] + bounds[1][0]) / 2 | |
| center_lng = (bounds[0][1] + bounds[1][1]) / 2 | |
| zoom = 10 # Adjust zoom level as needed | |
| m.set_center(center_lat, center_lng, zoom) | |
| # Process each feature in the GeoJSON | |
| for feature in geojson_data["features"]: | |
| geom_type = feature["geometry"]["type"] | |
| coords = feature["geometry"]["coordinates"] | |
| if geom_type == "Point": | |
| m.add_marker(CircleMarker((coords[0], coords[1]), 'blue', 10)) | |
| elif geom_type in ["MultiPoint", "LineString"]: | |
| for coord in coords: | |
| m.add_marker(CircleMarker((coord[0], coord[1]), 'blue', 10)) | |
| elif geom_type in ["Polygon", "MultiPolygon"]: | |
| for polygon in coords: | |
| m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], 'blue', 3)) | |
| return m.render(zoom=10) | |
| # Gradio UI | |
| def handle_query(query): | |
| # Process OpenAI response | |
| response = process_openai_response(query) | |
| geojson_data = generate_geojson(response) | |
| # Generate the main map image | |
| map_image = generate_static_map(geojson_data) | |
| # Generate the empty map using the same bounds | |
| bounds = get_bounds(geojson_data) | |
| empty_geojson = { | |
| "type": "FeatureCollection", | |
| "features": [] # Empty map contains no features | |
| } | |
| empty_map_image = generate_static_map(empty_geojson) # Empty map with the same bounds | |
| # Create the mask | |
| difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB"))) | |
| threshold = 10 # Tolerance for difference | |
| mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255 | |
| # Convert the mask to a PIL image | |
| mask_image = Image.fromarray(mask, mode="L") | |
| # Generate the satellite image | |
| satellite_image = generate_satellite_image( | |
| map_image, mask_image, response['output']['feature_representation']['properties']['description'] | |
| ) | |
| return map_image, satellite_image, mask_image, response | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| query_input = gr.Textbox(label="Enter Query") | |
| submit_btn = gr.Button("Submit") | |
| with gr.Row(): | |
| map_output = gr.Image(label="Map Visualization") | |
| satellite_output = gr.Image(label="Generated Satellite Image") | |
| mask_output = gr.Image(label="Mask") | |
| image_prompt = gr.Textbox(label="Image Prompt Used") | |
| submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output, mask_output, image_prompt]) | |
| if __name__ == "__main__": | |
| demo.launch() | |