Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import numpy as np | |
| import torch | |
| from PIL import Image, ImageDraw | |
| import gradio as gr | |
| from openai import OpenAI | |
| from geopy.geocoders import Nominatim | |
| from staticmap import StaticMap, CircleMarker, Polygon | |
| from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline | |
| import spaces | |
| import logging | |
| import math | |
| from typing import List, Union | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| # Initialize APIs | |
| openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY']) | |
| geolocator = Nominatim(user_agent="geoapi") | |
| # Function to fetch coordinates | |
| def get_geo_coordinates(location_name): | |
| try: | |
| location = geolocator.geocode(location_name) | |
| if location: | |
| return [location.longitude, location.latitude] | |
| return None | |
| except Exception as e: | |
| logger.error(f"Error fetching coordinates for {location_name}: {e}") | |
| return None | |
| # Function to process OpenAI chat response | |
| def process_openai_response(query): | |
| response = openai_client.chat.completions.create( | |
| model="gpt-4o-mini", | |
| messages=[ | |
| { | |
| "role": "system", | |
| "content": """ | |
| You are an assistant that generates structured JSON output for geographical queries with city names. Your task is to generate a JSON object containing information about geographical features and their representation based on the user's query. Follow these rules: | |
| 1. The JSON should always have the following structure: | |
| { | |
| "input": "<user's query>", | |
| "output": { | |
| "answer": "<concise text answering the query>", | |
| "feature_representation": { | |
| "type": "<one of: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection>", | |
| "cities": ["<list of city names>"], | |
| "properties": { | |
| "description": "<a prompt for a diffusion model describing the geographical feature>" | |
| } | |
| } | |
| } | |
| } | |
| 2. For the `type` field in `feature_representation`: | |
| - Use "Point" for single city queries. | |
| - Use "MultiPoint" for queries involving multiple cities not forming a line or area. | |
| - Use "LineString" for queries about paths between two or more cities. | |
| - Use "Polygon" for queries about areas formed by three or more cities. | |
| 3. For the `cities` field: | |
| - List the names of cities mentioned in the query in the order they appear. | |
| - If no cities are mentioned, try to add them with your knowledge. | |
| 4. For the `properties.description` field: | |
| - Describe the geographical feature in a creative way, suitable for generating an image with a diffusion model. | |
| ### Example Input: | |
| "Mark a triangular area of 3 US cities." | |
| ### Example Output: | |
| { | |
| "input": "Mark a triangular area of 3 US cities.", | |
| "output": { | |
| "answer": "The cities New York, Boston, and Philadelphia form a triangle.", | |
| "feature_representation": { | |
| "type": "Polygon", | |
| "cities": ["New York", "Boston", "Philadelphia"], | |
| "properties": { | |
| "description": "A satellite image of a triangular area formed by New York, Boston, and Philadelphia, with green fields and urban regions, 4k resolution, highly detailed." | |
| } | |
| } | |
| } | |
| } | |
| Generate similar JSON for the following query: | |
| """ | |
| }, | |
| { | |
| "role": "user", | |
| "content": query | |
| } | |
| ], | |
| temperature=1, | |
| max_tokens=2048, | |
| top_p=1, | |
| frequency_penalty=0, | |
| presence_penalty=0, | |
| response_format={"type": "json_object"} | |
| ) | |
| return json.loads(response.choices[0].message.content) | |
| # Generate GeoJSON from OpenAI response | |
| def generate_geojson(response): | |
| logger.info(f"OpenAI response: {response}") | |
| feature_type = response['output']['feature_representation']['type'] | |
| city_names = response['output']['feature_representation']['cities'] | |
| properties = response['output']['feature_representation']['properties'] | |
| coordinates = [] | |
| # Fetch coordinates for cities | |
| for city in city_names: | |
| try: | |
| coord = get_geo_coordinates(city) | |
| if coord: | |
| coordinates.append(coord) | |
| else: | |
| logger.warning(f"Coordinates not found for city: {city}") | |
| except Exception as e: | |
| logger.error(f"Error fetching coordinates for {city}: {e}") | |
| if feature_type == "Polygon": | |
| if len(coordinates) < 3: | |
| raise ValueError("Polygon requires at least 3 coordinates.") | |
| # Close the polygon by appending the first point at the end | |
| coordinates.append(coordinates[0]) | |
| coordinates = [coordinates] # Nest coordinates for Polygon | |
| # Create the GeoJSON object | |
| geojson_data = { | |
| "type": "FeatureCollection", | |
| "features": [ | |
| { | |
| "type": "Feature", | |
| "properties": properties, | |
| "geometry": { | |
| "type": feature_type, | |
| "coordinates": coordinates, | |
| }, | |
| } | |
| ], | |
| } | |
| return geojson_data | |
| # Sort coordinates for a simple polygon (Reduce intersection points) | |
| def sort_coordinates_for_simple_polygon(geojson): | |
| # Extract coordinates from the GeoJSON | |
| coordinates = geojson['features'][0]['geometry']['coordinates'][0] | |
| # Remove the last point if it duplicates the first (GeoJSON convention for polygons) | |
| if coordinates[0] == coordinates[-1]: | |
| coordinates = coordinates[:-1] | |
| # Calculate the centroid of the points | |
| centroid_x = sum(point[0] for point in coordinates) / len(coordinates) | |
| centroid_y = sum(point[1] for point in coordinates) / len(coordinates) | |
| # Define a function to calculate the angle relative to the centroid | |
| def angle_from_centroid(point): | |
| dx = point[0] - centroid_x | |
| dy = point[1] - centroid_y | |
| return math.atan2(dy, dx) | |
| # Sort points by their angle from the centroid | |
| sorted_coordinates = sorted(coordinates, key=angle_from_centroid) | |
| # Close the polygon by appending the first point to the end | |
| sorted_coordinates.append(sorted_coordinates[0]) | |
| # Update the GeoJSON with sorted coordinates | |
| geojson['features'][0]['geometry']['coordinates'][0] = sorted_coordinates | |
| return geojson | |
| # Generate static map image | |
| def generate_static_map(geojson_data, invisible=False): | |
| m = StaticMap(600, 600) | |
| logger.info(f"GeoJSON data: {geojson_data}") | |
| for feature in geojson_data["features"]: | |
| geom_type = feature["geometry"]["type"] | |
| coords = feature["geometry"]["coordinates"] | |
| if geom_type == "Point": | |
| m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else '#42445A85', 100)) | |
| elif geom_type in ["MultiPoint", "LineString"]: | |
| for coord in coords: | |
| m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else '#42445A85', 100)) | |
| elif geom_type in ["Polygon", "MultiPolygon"]: | |
| for polygon in coords: | |
| m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else '#42445A85', 3)) | |
| return m.render() | |
| # ControlNet pipeline setup | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16) | |
| pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 | |
| ) | |
| pipeline.to('cuda') | |
| def make_inpaint_condition(init_image, mask_image): | |
| init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0 | |
| mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0 | |
| assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size" | |
| init_image[mask_image > 0.5] = -1.0 # set as masked pixel | |
| init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2) | |
| init_image = torch.from_numpy(init_image) | |
| return init_image | |
| def generate_satellite_image(init_image, mask_image, prompt): | |
| control_image = make_inpaint_condition(init_image, mask_image) | |
| result = pipeline( | |
| prompt=prompt, | |
| image=init_image, | |
| mask_image=mask_image, | |
| control_image=control_image, | |
| strength=0.47, | |
| guidance_scale=95, | |
| num_inference_steps=250 | |
| ) | |
| return result.images[0] | |
| # Gradio UI | |
| def handle_query(query): | |
| response = process_openai_response(query) | |
| geojson_data = generate_geojson(response) | |
| if geojson_data["features"][0]["geometry"]["type"] == 'Polygon': | |
| geojson_data_coords = sort_coordinates_for_simple_polygon(geojson_data) | |
| map_image = generate_static_map(geojson_data_coords) | |
| else: | |
| map_image = generate_static_map(geojson_data) | |
| empty_map_image = generate_static_map(geojson_data, invisible=True) | |
| difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB"))) | |
| threshold = 10 | |
| mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255 | |
| mask_image = Image.fromarray(mask, mode="L") | |
| satellite_image = generate_satellite_image( | |
| empty_map_image, mask_image, response['output']['feature_representation']['properties']['description'] | |
| ) | |
| return map_image, satellite_image, empty_map_image, mask_image, response | |
| def update_query(selected_query): | |
| return selected_query | |
| query_options = [ | |
| "Area covering south asian subcontinent", | |
| "Mark a triangular area using New York, Boston, and Texas", | |
| "Mark cities in India", | |
| "Show me Lotus Tower in a Map", | |
| "Mark the area of west germany", | |
| "Mark the area of the Amazon rainforest", | |
| "Mark the area of the Sahara desert" | |
| ] | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1]) | |
| query_input = gr.Textbox(label="Enter Query", value=query_options[-1]) | |
| selected_query.change(update_query, inputs=selected_query, outputs=query_input) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Row(): | |
| map_output = gr.Image(label="Map Visualization") | |
| satellite_output = gr.Image(label="Generated Map Image") | |
| with gr.Row(): | |
| empty_map_output = gr.Image(label="Empty Visualization") | |
| mask_output = gr.Image(label="Mask") | |
| image_prompt = gr.Textbox(label="Image Prompt Used") | |
| submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output, empty_map_output, mask_output, image_prompt]) | |
| if __name__ == "__main__": | |
| demo.launch() | |