VisualizeGeoMap / app.py
Suchinthana
Function addition, requirements update
8319e98
raw
history blame
5.97 kB
import gradio as gr
import os
import json
from openai import OpenAI
from geopy.geocoders import Nominatim
from folium import Map, GeoJson
from gradio_folium import Folium
import cv2
import numpy as np
import torch
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
from PIL import Image
import io
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
print(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a skilled assistant answering geographical and historical questions..."},
{"role": "user", "content": query}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
def generate_geojson(response):
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
for city in city_names:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
if feature_type == "Polygon":
coordinates.append(coordinates[0]) # Close the polygon
return {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
}
}]
}
# Function to compute bounds from GeoJSON
def get_bounds(geojson):
coordinates = []
for feature in geojson["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
coordinates.append(coords)
elif geom_type in ["MultiPoint", "LineString"]:
coordinates.extend(coords)
elif geom_type in ["MultiLineString", "Polygon"]:
for part in coords:
coordinates.extend(part)
elif geom_type == "MultiPolygon":
for polygon in coords:
for part in polygon:
coordinates.extend(part)
lats = [coord[1] for coord in coordinates]
lngs = [coord[0] for coord in coordinates]
return [[min(lats), min(lngs)], [max(lats), max(lngs)]]
# Generate map image
def save_map_image(geojson_data):
m = Map()
geo_layer = GeoJson(geojson_data, name="Feature map")
geo_layer.add_to(m)
bounds = get_bounds(geojson_data)
m.fit_bounds(bounds)
img_data = m._to_png(5)
img = Image.open(io.BytesIO(img_data))
img.save('map_image.png')
return 'map_image.png'
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
def generate_satellite_image(init_image_path, mask_image_path, prompt):
init_image = Image.open(init_image_path)
mask_image = Image.open(mask_image_path)
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image)
return result.images[0]
# Gradio UI
def handle_query(query):
# Process OpenAI response
response = process_openai_response(query)
geojson_data = generate_geojson(response)
# Save map image
map_image_path = save_map_image(geojson_data)
# Generate mask for ControlNet
empty_map = cv2.imread("empty_map_image.png")
map_image = cv2.imread(map_image_path)
difference = cv2.absdiff(cv2.cvtColor(empty_map, cv2.COLOR_BGR2GRAY), cv2.cvtColor(map_image, cv2.COLOR_BGR2GRAY))
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
cv2.imwrite("mask.png", mask)
# Generate satellite image
satellite_image = generate_satellite_image("map_image.png", "mask.png", response['output']['feature_representation']['properties']['description'])
return map_image_path, satellite_image
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
query_input = gr.Textbox(label="Enter Query")
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
satellite_output = gr.Image(label="Generated Satellite Image")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output])
if __name__ == "__main__":
demo.launch()