VisualizeGeoMap / app.py
Suchinthana
prompt update
0c2f440
raw
history blame
7.62 kB
import os
import json
import cv2
import numpy as np
import torch
from PIL import Image
import io
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from folium import Map, GeoJson
from gradio_folium import Folium
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
print(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "\"input\": \"\"\"You are a skilled assistant answering geographical and historical questions. For each question, generate a structured output in JSON format, based on city names without coordinates. The response should include:\
Answer: A concise response to the question.\
Feature Representation: A feature type based on city names (Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection).\
Description: A prompt for a diffusion model describing the what should we draw regarding that.\
\
Handle the following cases:\
\
1. **Single or Multiple Points**: Create a point or a list of points for multiple cities.\
2. **LineString**: Create a line between two cities.\
3. **Polygon**: Represent an area formed by three or more cities (closed). Example: Cities forming a triangle (A, B, C).\
4. **MultiPoint, MultiLineString, MultiPolygon, GeometryCollection**: Use as needed based on the question.\
\
For example, if asked about cities forming a polygon, create a feature like this:\
\
Input: Mark an area with three cities.\
Output: {\"input\": \"Mark an area with three cities.\", \"output\": {\"answer\": \"The cities A, B, and C form a triangle.\", \"feature_representation\": {\"type\": \"Polygon\", \"cities\": [\"A\", \"B\", \"C\"], \"properties\": {\"description\": \"satelite image of a plantation, green fill, 4k, map, detailed, greenary, plants, vegitation, high contrast\"}}}}\
\
Ensure all responses are descriptive and relevant to city names only, without coordinates.\
\"}\"}"
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": query
}
]
}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
for city in city_names:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
if feature_type == "Polygon":
coordinates.append(coordinates[0]) # Close the polygon
return {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
}
}]
}
# Function to compute bounds from GeoJSON
@spaces.GPU
def get_bounds(geojson):
coordinates = []
for feature in geojson["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
coordinates.append(coords)
elif geom_type in ["MultiPoint", "LineString"]:
coordinates.extend(coords)
elif geom_type in ["MultiLineString", "Polygon"]:
for part in coords:
coordinates.extend(part)
elif geom_type == "MultiPolygon":
for polygon in coords:
for part in polygon:
coordinates.extend(part)
lats = [coord[1] for coord in coordinates]
lngs = [coord[0] for coord in coordinates]
return [[min(lats), min(lngs)], [max(lats), max(lngs)]]
# Generate map image in memory
@spaces.GPU
def generate_map_image(geojson_data):
m = Map()
geo_layer = GeoJson(geojson_data, name="Feature map")
geo_layer.add_to(m)
bounds = get_bounds(geojson_data)
m.fit_bounds(bounds)
img_data = m._to_png(5)
return Image.open(io.BytesIO(img_data))
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
# ZeroGPU compatibility
pipeline.to('cuda')
@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image)
return result.images[0]
# Gradio UI
@spaces.GPU
def handle_query(query):
# Process OpenAI response
response = process_openai_response(query)
geojson_data = generate_geojson(response)
# Generate map image
map_image = generate_map_image(geojson_data)
# Generate mask for ControlNet
empty_map = cv2.cvtColor(np.array(generate_map_image({"type": "FeatureCollection", "features": []})), cv2.COLOR_BGR2GRAY)
map_image_array = cv2.cvtColor(np.array(map_image), cv2.COLOR_BGR2GRAY)
difference = cv2.absdiff(empty_map, map_image_array)
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
# Convert mask to PIL Image
mask_image = Image.fromarray(mask)
# Generate satellite image
satellite_image = generate_satellite_image(map_image, mask_image, response['output']['feature_representation']['properties']['description'])
return map_image, satellite_image
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
query_input = gr.Textbox(label="Enter Query")
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
satellite_output = gr.Image(label="Generated Satellite Image")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output])
if __name__ == "__main__":
demo.launch()