File size: 10,936 Bytes
45f7be1
 
 
 
42897ae
a52b051
 
 
a1a380b
a52b051
 
879a241
24a1808
8152b02
879a241
 
 
 
6efeffc
45f7be1
 
 
6efeffc
45f7be1
a52b051
45f7be1
 
 
 
 
 
 
879a241
45f7be1
 
 
a52b051
45f7be1
 
 
 
8152b02
 
c6fc1b3
2ef199a
c6fc1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ef199a
c6fc1b3
 
 
 
 
2ef199a
c6fc1b3
 
 
e74df71
c6fc1b3
 
 
 
 
 
 
 
 
 
 
 
 
 
8152b02
 
 
 
 
 
36e6906
 
 
 
 
 
45f7be1
 
 
 
a52b051
45f7be1
fd3b5e9
45f7be1
 
 
a52b051
45f7be1
a52b051
0376c05
 
 
fe42fe7
0376c05
 
 
 
 
 
 
 
 
 
 
 
 
45f7be1
0261894
8152b02
45f7be1
8152b02
 
 
 
 
 
0376c05
 
45f7be1
0376c05
45f7be1
 
fe42fe7
8152b02
24a1808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42897ae
a52b051
d6f2bf8
a1a380b
2cf2e45
8152b02
42897ae
8319e98
 
42897ae
8319e98
7a1d390
8319e98
42897ae
7a1d390
42897ae
8319e98
7a1d390
45f7be1
8152b02
92e64c7
45f7be1
 
 
1b5be08
45f7be1
3e8f3e6
 
a52b051
8319e98
 
 
 
 
 
 
 
 
 
a52b051
36e6906
45f7be1
a5e00fd
 
 
 
 
9690adb
 
 
8152b02
45f7be1
 
 
a52b051
45f7be1
 
 
a52b051
85bb77d
 
 
 
 
8152b02
a52b051
9b980f8
8152b02
9b980f8
36e6906
9b980f8
 
aa6df08
9b980f8
a52b051
2eda22a
45f7be1
f219d44
 
 
 
8f22ee9
2eda22a
7af0491
2eda22a
7af0491
 
 
 
9b980f8
45f7be1
 
f219d44
 
 
45f7be1
 
 
2eda22a
681ada7
2eda22a
3647dae
0b075c8
2eda22a
45f7be1
 
36e6906
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import os
import json
import numpy as np
import torch
from PIL import Image, ImageDraw
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from staticmap import StaticMap, CircleMarker, Polygon
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
import logging
import math
from typing import List, Union

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")

# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
    try:
        location = geolocator.geocode(location_name)
        if location:
            return [location.longitude, location.latitude]
        return None
    except Exception as e:
        logger.error(f"Error fetching coordinates for {location_name}: {e}")
        return None

# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
    response = openai_client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "system",
                "content": """
You are an assistant that generates structured JSON output for geographical queries with city names. Your task is to generate a JSON object containing information about geographical features and their representation based on the user's query. Follow these rules:

1. The JSON should always have the following structure:
    {
        "input": "<user's query>",
        "output": {
            "answer": "<concise text answering the query>",
            "feature_representation": {
                "type": "<one of: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection>",
                "cities": ["<list of city names>"],
                "properties": {
                    "description": "<a prompt for a diffusion model describing the geographical feature>"
                }
            }
        }
    }

2. For the `type` field in `feature_representation`:
    - Use "Point" for single city queries.
    - Use "MultiPoint" for queries involving multiple cities not forming a line or area.
    - Use "LineString" for queries about paths between two or more cities.
    - Use "Polygon" for queries about areas formed by three or more cities.

3. For the `cities` field:
    - List the names of cities mentioned in the query in the order they appear.
    - If no cities are mentioned, try to add them with your knowledge.

4. For the `properties.description` field:
    - Describe the geographical feature in a creative way, suitable for generating an image with a diffusion model.

### Example Input:
"Mark a triangular area of 3 US cities."

### Example Output:
{
    "input": "Mark a triangular area of 3 US cities.",
    "output": {
        "answer": "The cities New York, Boston, and Philadelphia form a triangle.",
        "feature_representation": {
            "type": "Polygon",
            "cities": ["New York", "Boston", "Philadelphia"],
            "properties": {
                "description": "A satellite image of a triangular area formed by New York, Boston, and Philadelphia, with green fields and urban regions, 4k resolution, highly detailed."
            }
        }
    }
}

Generate similar JSON for the following query:
"""
            },
            {
                "role": "user",
                "content": query
            }
        ],
        temperature=1,
        max_tokens=2048,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
        response_format={"type": "json_object"}
    )
    return json.loads(response.choices[0].message.content)

# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
    logger.info(f"OpenAI response: {response}")
    feature_type = response['output']['feature_representation']['type']
    city_names = response['output']['feature_representation']['cities']
    properties = response['output']['feature_representation']['properties']

    coordinates = []

    # Fetch coordinates for cities
    for city in city_names:
        try:
            coord = get_geo_coordinates(city)
            if coord:
                coordinates.append(coord)
            else:
                logger.warning(f"Coordinates not found for city: {city}")
        except Exception as e:
            logger.error(f"Error fetching coordinates for {city}: {e}")

    if feature_type == "Polygon":
        if len(coordinates) < 3:
            raise ValueError("Polygon requires at least 3 coordinates.")
        # Close the polygon by appending the first point at the end
        coordinates.append(coordinates[0])
        coordinates = [coordinates]  # Nest coordinates for Polygon

    # Create the GeoJSON object
    geojson_data = {
        "type": "FeatureCollection",
        "features": [
            {
                "type": "Feature",
                "properties": properties,
                "geometry": {
                    "type": feature_type,
                    "coordinates": coordinates,
                },
            }
        ],
    }

    return geojson_data

# Sort coordinates for a simple polygon (Reduce intersection points)
def sort_coordinates_for_simple_polygon(geojson):
    # Extract coordinates from the GeoJSON
    coordinates = geojson['features'][0]['geometry']['coordinates'][0]

    # Remove the last point if it duplicates the first (GeoJSON convention for polygons)
    if coordinates[0] == coordinates[-1]:
        coordinates = coordinates[:-1]

    # Calculate the centroid of the points
    centroid_x = sum(point[0] for point in coordinates) / len(coordinates)
    centroid_y = sum(point[1] for point in coordinates) / len(coordinates)

    # Define a function to calculate the angle relative to the centroid
    def angle_from_centroid(point):
        dx = point[0] - centroid_x
        dy = point[1] - centroid_y
        return math.atan2(dy, dx)

    # Sort points by their angle from the centroid
    sorted_coordinates = sorted(coordinates, key=angle_from_centroid)

    # Close the polygon by appending the first point to the end
    sorted_coordinates.append(sorted_coordinates[0])

    # Update the GeoJSON with sorted coordinates
    geojson['features'][0]['geometry']['coordinates'][0] = sorted_coordinates

    return geojson

# Generate static map image
@spaces.GPU
def generate_static_map(geojson_data, invisible=False):
    m = StaticMap(600, 600)
    logger.info(f"GeoJSON data: {geojson_data}")

    for feature in geojson_data["features"]:
        geom_type = feature["geometry"]["type"]
        coords = feature["geometry"]["coordinates"]

        if geom_type == "Point":
            m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else '#42445A85', 100))
        elif geom_type in ["MultiPoint", "LineString"]:
            for coord in coords:
                m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else '#42445A85', 100))
        elif geom_type in ["Polygon", "MultiPolygon"]:
            for polygon in coords:
                m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else '#42445A85', 3))

    return m.render()

# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline.to('cuda')

@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
    init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
    mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0

    assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
    init_image[mask_image > 0.5] = -1.0  # set as masked pixel
    init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
    init_image = torch.from_numpy(init_image)
    return init_image

@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
    control_image = make_inpaint_condition(init_image, mask_image)
    result = pipeline(
        prompt=prompt, 
        image=init_image, 
        mask_image=mask_image, 
        control_image=control_image,
        strength=0.47,
        guidance_scale=95,
        num_inference_steps=250
    )
    return result.images[0]

# Gradio UI
@spaces.GPU
def handle_query(query):
    response = process_openai_response(query)
    geojson_data = generate_geojson(response)

    if geojson_data["features"][0]["geometry"]["type"] == 'Polygon':
        geojson_data_coords = sort_coordinates_for_simple_polygon(geojson_data)
        map_image = generate_static_map(geojson_data_coords)
    else:
        map_image = generate_static_map(geojson_data)
    empty_map_image = generate_static_map(geojson_data, invisible=True)

    difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
    threshold = 10
    mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255

    mask_image = Image.fromarray(mask, mode="L")
    satellite_image = generate_satellite_image(
        empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
    )

    return map_image, satellite_image, empty_map_image, mask_image, response

def update_query(selected_query):
    return selected_query

query_options = [
    "Area covering south asian subcontinent",
    "Mark a triangular area using New York, Boston, and Texas",
    "Mark cities in India",
    "Show me Lotus Tower in a Map",
    "Mark the area of west germany",
    "Mark the area of the Amazon rainforest",
    "Mark the area of the Sahara desert"
    ]

with gr.Blocks() as demo:
    with gr.Row():
        selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
        query_input = gr.Textbox(label="Enter Query", value=query_options[-1])
        selected_query.change(update_query, inputs=selected_query, outputs=query_input)
        submit_btn = gr.Button("Submit")
    with gr.Row():
        map_output = gr.Image(label="Map Visualization")
        satellite_output = gr.Image(label="Generated Map Image")
    with gr.Row():
        empty_map_output = gr.Image(label="Empty Visualization")
        mask_output = gr.Image(label="Mask")
        image_prompt = gr.Textbox(label="Image Prompt Used")
    submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output, empty_map_output, mask_output, image_prompt])

if __name__ == "__main__":
    demo.launch()