Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,400 Bytes
45f7be1 42897ae a52b051 a1a380b a52b051 879a241 8152b02 879a241 6efeffc 45f7be1 6efeffc 45f7be1 a52b051 45f7be1 879a241 45f7be1 a52b051 45f7be1 8152b02 c6fc1b3 e74df71 c6fc1b3 8152b02 36e6906 45f7be1 a52b051 45f7be1 fd3b5e9 45f7be1 a52b051 45f7be1 a52b051 0376c05 fe42fe7 0376c05 45f7be1 0261894 8152b02 45f7be1 8152b02 0376c05 45f7be1 0376c05 45f7be1 fe42fe7 8152b02 42897ae a52b051 d6f2bf8 a1a380b 2cf2e45 8152b02 42897ae 8319e98 42897ae 8319e98 7a1d390 8319e98 42897ae 7a1d390 42897ae 8319e98 7a1d390 45f7be1 8152b02 92e64c7 45f7be1 1b5be08 45f7be1 3e8f3e6 a52b051 8319e98 a52b051 36e6906 45f7be1 a5e00fd 9a9b5e3 e74df71 8152b02 45f7be1 a52b051 45f7be1 a52b051 42897ae 8152b02 a52b051 9b980f8 8152b02 9b980f8 36e6906 9b980f8 aa6df08 9b980f8 a52b051 681ada7 45f7be1 f219d44 8f22ee9 f219d44 9b980f8 45f7be1 f219d44 45f7be1 681ada7 45f7be1 3647dae 0b075c8 681ada7 45f7be1 36e6906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import os
import json
import numpy as np
import torch
from PIL import Image, ImageDraw
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from staticmap import StaticMap, CircleMarker, Polygon
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
import logging
from typing import List, Union
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
logger.error(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": """
You are an assistant that generates structured JSON output for geographical queries. Your task is to generate a JSON object containing information about geographical features and their representation based on the user's query. Follow these rules:
1. The JSON should always have the following structure:
{
"input": "<user's query>",
"output": {
"answer": "<concise text answering the query>",
"feature_representation": {
"type": "<one of: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection>",
"cities": ["<list of city names>"],
"properties": {
"description": "<a prompt for a diffusion model describing the geographical feature>"
}
}
}
}
2. For the `type` field in `feature_representation`:
- Use "Point" for single city queries.
- Use "MultiPoint" for queries involving multiple cities not forming a line or area.
- Use "LineString" for queries about paths between two or more cities.
- Use "Polygon" for queries about areas formed by three or more cities.
3. For the `cities` field:
- List the names of cities mentioned in the query in the order they appear.
- If no cities are mentioned, leave the array empty.
4. For the `properties.description` field:
- Describe the geographical feature in a creative way, suitable for generating an image with a diffusion model.
### Example Input:
"Mark a triangular area using New York, Boston, and Philadelphia."
### Example Output:
{
"input": "Mark a triangular area of 3 US cities.",
"output": {
"answer": "The cities New York, Boston, and Philadelphia form a triangle.",
"feature_representation": {
"type": "Polygon",
"cities": ["New York", "Boston", "Philadelphia"],
"properties": {
"description": "A satellite image of a triangular area formed by New York, Boston, and Philadelphia, with green fields and urban regions, 4k resolution, highly detailed."
}
}
}
}
Generate similar JSON for the following query:
"""
},
{
"role": "user",
"content": query
}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
logger.info(f"OpenAI response: {response}")
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
# Fetch coordinates for cities
for city in city_names:
try:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
else:
logger.warning(f"Coordinates not found for city: {city}")
except Exception as e:
logger.error(f"Error fetching coordinates for {city}: {e}")
if feature_type == "Polygon":
if len(coordinates) < 3:
raise ValueError("Polygon requires at least 3 coordinates.")
# Close the polygon by appending the first point at the end
coordinates.append(coordinates[0])
coordinates = [coordinates] # Nest coordinates for Polygon
# Create the GeoJSON object
geojson_data = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": coordinates,
},
}
],
}
return geojson_data
# Generate static map image
@spaces.GPU
def generate_static_map(geojson_data, invisible=False):
m = StaticMap(600, 600)
logger.info(f"GeoJSON data: {geojson_data}")
for feature in geojson_data["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else '#42445A85', 100))
elif geom_type in ["MultiPoint", "LineString"]:
for coord in coords:
m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else '#42445A85', 100))
elif geom_type in ["Polygon", "MultiPolygon"]:
for polygon in coords:
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else '#42445A85', 3))
return m.render()
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline.to('cuda')
@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(
prompt=prompt,
image=init_image,
mask_image=mask_image,
control_image=control_image,
strength=0.42,
guidance_scale=85
)
return result.images[0]
# Gradio UI
@spaces.GPU
def handle_query(query):
response = process_openai_response(query)
geojson_data = generate_geojson(response)
map_image = generate_static_map(geojson_data)
empty_map_image = generate_static_map(geojson_data, invisible=True)
difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
threshold = 10
mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255
mask_image = Image.fromarray(mask, mode="L")
satellite_image = generate_satellite_image(
empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
)
return map_image, empty_map_image, satellite_image, mask_image, response
def update_query(selected_query):
return selected_query
query_options = [
"Area covering south asian subcontinent",
"Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said."
]
with gr.Blocks() as demo:
with gr.Row():
selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
query_input = gr.Textbox(label="Enter Query", value=query_options[-1])
selected_query.change(update_query, inputs=selected_query, outputs=query_input)
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
empty_map_output = gr.Image(label="Empty Visualization")
with gr.Row():
satellite_output = gr.Image(label="Generated Satellite Image")
mask_output = gr.Image(label="Mask")
image_prompt = gr.Textbox(label="Image Prompt Used")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, empty_map_output, satellite_output, mask_output, image_prompt])
if __name__ == "__main__":
demo.launch()
|