Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,074 Bytes
45f7be1 a52b051 6efeffc 45f7be1 6efeffc 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 8319e98 a52b051 8319e98 45f7be1 a52b051 45f7be1 1b5be08 45f7be1 a52b051 3e8f3e6 a52b051 8319e98 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import json
import cv2
import numpy as np
import torch
from PIL import Image
import io
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from folium import Map, GeoJson
from gradio_folium import Folium
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
print(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a skilled assistant answering geographical and historical questions..."},
{"role": "user", "content": query}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
for city in city_names:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
if feature_type == "Polygon":
coordinates.append(coordinates[0]) # Close the polygon
return {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
}
}]
}
# Function to compute bounds from GeoJSON
@spaces.GPU
def get_bounds(geojson):
coordinates = []
for feature in geojson["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
coordinates.append(coords)
elif geom_type in ["MultiPoint", "LineString"]:
coordinates.extend(coords)
elif geom_type in ["MultiLineString", "Polygon"]:
for part in coords:
coordinates.extend(part)
elif geom_type == "MultiPolygon":
for polygon in coords:
for part in polygon:
coordinates.extend(part)
lats = [coord[1] for coord in coordinates]
lngs = [coord[0] for coord in coordinates]
return [[min(lats), min(lngs)], [max(lats), max(lngs)]]
# Generate map image
@spaces.GPU
def save_map_image(geojson_data):
m = Map()
geo_layer = GeoJson(geojson_data, name="Feature map")
geo_layer.add_to(m)
bounds = get_bounds(geojson_data)
m.fit_bounds(bounds)
img_data = m._to_png(5)
img = Image.open(io.BytesIO(img_data))
img.save('map_image.png')
return 'map_image.png'
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
# ZeroGPU compatibility
pipeline.to('cuda')
@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
@spaces.GPU
def generate_satellite_image(init_image_path, mask_image_path, prompt):
init_image = Image.open(init_image_path)
mask_image = Image.open(mask_image_path)
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image)
return result.images[0]
# Gradio UI
@spaces.GPU
def handle_query(query):
# Process OpenAI response
response = process_openai_response(query)
geojson_data = generate_geojson(response)
# Save map image
map_image_path = save_map_image(geojson_data)
# Generate mask for ControlNet
empty_map = cv2.imread("empty_map_image.png")
map_image = cv2.imread(map_image_path)
difference = cv2.absdiff(cv2.cvtColor(empty_map, cv2.COLOR_BGR2GRAY), cv2.cvtColor(map_image, cv2.COLOR_BGR2GRAY))
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
cv2.imwrite("mask.png", mask)
# Generate satellite image
satellite_image = generate_satellite_image("map_image.png", "mask.png", response['output']['feature_representation']['properties']['description'])
return map_image_path, satellite_image
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
query_input = gr.Textbox(label="Enter Query")
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
satellite_output = gr.Image(label="Generated Satellite Image")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output])
if __name__ == "__main__":
demo.launch() |