File size: 4,608 Bytes
6efeffc
45f7be1
 
 
 
 
 
 
 
 
 
 
 
6efeffc
45f7be1
 
 
6efeffc
45f7be1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr
import os
import json
from openai import OpenAI
from geopy.geocoders import Nominatim
from folium import Map, GeoJson
from gradio_folium import Folium
import cv2
import numpy as np
import torch
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
from PIL import Image
import io

# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")

# Function to fetch coordinates
def get_geo_coordinates(location_name):
    try:
        location = geolocator.geocode(location_name)
        if location:
            return [location.longitude, location.latitude]
        return None
    except Exception as e:
        print(f"Error fetching coordinates for {location_name}: {e}")
        return None

# Function to process OpenAI chat response
def process_openai_response(query):
    response = openai_client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": "You are a skilled assistant answering geographical and historical questions..."},
            {"role": "user", "content": query}
        ],
        temperature=1,
        max_tokens=2048,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
        response_format={"type": "json_object"}
    )
    return json.loads(response.choices[0].message.content)

# Generate GeoJSON from OpenAI response
def generate_geojson(response):
    feature_type = response['output']['feature_representation']['type']
    city_names = response['output']['feature_representation']['cities']
    properties = response['output']['feature_representation']['properties']
    
    coordinates = []
    for city in city_names:
        coord = get_geo_coordinates(city)
        if coord:
            coordinates.append(coord)
    
    if feature_type == "Polygon":
        coordinates.append(coordinates[0])  # Close the polygon

    return {
        "type": "FeatureCollection",
        "features": [{
            "type": "Feature",
            "properties": properties,
            "geometry": {
                "type": feature_type,
                "coordinates": [coordinates] if feature_type == "Polygon" else coordinates
            }
        }]
    }

# Generate map image
def save_map_image(geojson_data):
    m = Map()
    geo_layer = GeoJson(geojson_data, name="Feature map")
    geo_layer.add_to(m)
    bounds = get_bounds(geojson_data)
    m.fit_bounds(bounds)
    img_data = m._to_png(5)
    img = Image.open(io.BytesIO(img_data))
    img.save('map_image.png')
    return 'map_image.png'

# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline.enable_model_cpu_offload()

def generate_satellite_image(init_image_path, mask_image_path, prompt):
    init_image = Image.open(init_image_path)
    mask_image = Image.open(mask_image_path)
    control_image = make_inpaint_condition(init_image, mask_image)
    result = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image)
    return result.images[0]

# Gradio UI
def handle_query(query):
    # Process OpenAI response
    response = process_openai_response(query)
    geojson_data = generate_geojson(response)
    
    # Save map image
    map_image_path = save_map_image(geojson_data)
    
    # Generate mask for ControlNet
    empty_map = cv2.imread("empty_map_image.png")
    map_image = cv2.imread(map_image_path)
    difference = cv2.absdiff(cv2.cvtColor(empty_map, cv2.COLOR_BGR2GRAY), cv2.cvtColor(map_image, cv2.COLOR_BGR2GRAY))
    _, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
    cv2.imwrite("mask.png", mask)
    
    # Generate satellite image
    satellite_image = generate_satellite_image("map_image.png", "mask.png", response['output']['feature_representation']['properties']['description'])
    
    return map_image_path, satellite_image

# Gradio interface
with gr.Blocks() as demo:
    with gr.Row():
        query_input = gr.Textbox(label="Enter Query")
        submit_btn = gr.Button("Submit")
    with gr.Row():
        map_output = gr.Image(label="Map Visualization")
        satellite_output = gr.Image(label="Generated Satellite Image")
    
    submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output])

if __name__ == "__main__":
    demo.launch()