File size: 8,591 Bytes
45f7be1
 
 
 
42897ae
a52b051
 
 
a1a380b
a52b051
 
879a241
 
 
 
 
6efeffc
45f7be1
 
 
6efeffc
45f7be1
a52b051
45f7be1
 
 
 
 
 
 
879a241
45f7be1
 
 
a52b051
45f7be1
 
 
 
0c2f440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1e7b22
0c2f440
 
 
 
36e6906
 
 
 
 
 
45f7be1
 
 
 
a52b051
45f7be1
 
 
 
a52b051
45f7be1
 
 
 
 
a52b051
45f7be1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42897ae
a52b051
d6f2bf8
084a1c8
a1a380b
2cf2e45
 
084a1c8
42897ae
8319e98
 
42897ae
8319e98
625985a
8319e98
42897ae
625985a
42897ae
8319e98
d6f2bf8
92e64c7
8f22ee9
45f7be1
92e64c7
45f7be1
 
 
1b5be08
45f7be1
a52b051
3e8f3e6
 
a52b051
8319e98
 
 
 
 
 
 
 
 
 
a52b051
36e6906
45f7be1
a5e00fd
 
 
 
 
9a9b5e3
6ad0561
a5e00fd
45f7be1
 
 
a52b051
45f7be1
 
 
 
a52b051
9b980f8
42897ae
a52b051
d6f2bf8
9b980f8
 
 
 
 
36e6906
9b980f8
 
a52b051
9b980f8
 
aa6df08
9b980f8
a52b051
681ada7
45f7be1
f219d44
 
 
 
8f22ee9
f219d44
 
9b980f8
45f7be1
 
 
f219d44
 
 
45f7be1
 
 
681ada7
 
45f7be1
3647dae
0b075c8
681ada7
45f7be1
 
36e6906
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import json
import numpy as np
import torch
from PIL import Image, ImageDraw
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from staticmap import StaticMap, CircleMarker, Polygon
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
import logging

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")

# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
    try:
        location = geolocator.geocode(location_name)
        if location:
            return [location.longitude, location.latitude]
        return None
    except Exception as e:
        logger.error(f"Error fetching coordinates for {location_name}: {e}")
        return None

# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
    response = openai_client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
    {
      "role": "system",
      "content": [
        {
          "type": "text",
          "text": "\"input\": \"\"\"You are a skilled assistant answering geographical and historical questions. For each question, generate a structured output in JSON format, based on city names without coordinates. The response should include:\
Answer: A concise response to the question.\
Feature Representation: A feature type based on city names (Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection).\
Description: A prompt for a diffusion model describing the what should we draw regarding that.\
\
Handle the following cases:\
\
1. **Single or Multiple Points**: Create a point or a list of points for multiple cities.\
2. **LineString**: Create a line between two cities.\
3. **Polygon**: Represent an area formed by three or more cities (closed). Example: Cities forming a triangle (A, B, C).\
4. **MultiPoint, MultiLineString, MultiPolygon, GeometryCollection**: Use as needed based on the question.\
\
For example, if asked about cities forming a polygon, create a feature like this:\
\
Input: Mark an area with three cities.\
Output: {\"input\": \"Mark an area with three cities.\", \"output\": {\"answer\": \"The cities A, B, and C form a triangle.\", \"feature_representation\": {\"type\": \"Polygon\", \"cities\": [\"A\", \"B\", \"C\"], \"properties\": {\"description\": \"satelite image of a plantation, green fill, 4k, map, detailed, greenary, plants, vegitation, high contrast\"}}}}\
\
Ensure all responses are descriptive and relevant to city names only, without coordinates.\
\"}\"}"
        }
      ]
    },
    {
      "role": "user",
      "content": [
        {
          "type": "text",
          "text": query
        }
      ]
    }
  ],
        temperature=1,
        max_tokens=2048,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
        response_format={"type": "json_object"}
    )
    return json.loads(response.choices[0].message.content)

# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
    feature_type = response['output']['feature_representation']['type']
    city_names = response['output']['feature_representation']['cities']
    properties = response['output']['feature_representation']['properties']

    coordinates = []
    for city in city_names:
        coord = get_geo_coordinates(city)
        if coord:
            coordinates.append(coord)

    if feature_type == "Polygon":
        coordinates.append(coordinates[0])  # Close the polygon

    return {
        "type": "FeatureCollection",
        "features": [{
            "type": "Feature",
            "properties": properties,
            "geometry": {
                "type": feature_type,
                "coordinates": [coordinates] if feature_type == "Polygon" else coordinates
            }
        }]
    }

# Generate static map image
@spaces.GPU
def generate_static_map(geojson_data, invisible=False):
    # Create a static map object with specified dimensions
    m = StaticMap(600, 600)
    #log the geojson data
    logger.info(f"GeoJSON data: {geojson_data}")
    # Process each feature in the GeoJSON
    for feature in geojson_data["features"]:
        geom_type = feature["geometry"]["type"]
        coords = feature["geometry"]["coordinates"]

        if geom_type == "Point":
            m.add_marker(CircleMarker((coords[0], coords[1]), '#1C00ff00' if invisible == True else 'blue', 1000))
        elif geom_type in ["MultiPoint", "LineString"]:
            for coord in coords:
                m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible == True else 'blue', 1000))
        elif geom_type in ["Polygon", "MultiPolygon"]:
            for polygon in coords:
                m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible == True else 'blue', 3))

    return m.render() #zoom=10


# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
# ZeroGPU compatibility
pipeline.to('cuda')

@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
    init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
    mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0

    assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
    init_image[mask_image > 0.5] = -1.0  # set as masked pixel
    init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
    init_image = torch.from_numpy(init_image)
    return init_image

@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
    control_image = make_inpaint_condition(init_image, mask_image)
    result = pipeline(
        prompt=prompt, 
        image=init_image, 
        mask_image=mask_image, 
        control_image=control_image,
        strength=0.42,
        guidance_scale=62
        )
    return result.images[0]

# Gradio UI
@spaces.GPU
def handle_query(query):
    # Process OpenAI response
    response = process_openai_response(query)
    geojson_data = generate_geojson(response)

    # Generate the main map image
    map_image = generate_static_map(geojson_data)

    empty_map_image = generate_static_map(geojson_data, invisible=True)  # Empty map with the same bounds

    # Create the mask
    difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
    threshold = 10  # Tolerance for difference
    mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255

    # Convert the mask to a PIL image
    mask_image = Image.fromarray(mask, mode="L")

    # Generate the satellite image
    satellite_image = generate_satellite_image(
        empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
    )

    return map_image, empty_map_image, satellite_image, mask_image, response

def update_query(selected_query):
    return selected_query

query_options = [
    "Area covering south asian subcontinent",
    "Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said."
]

# Gradio interface
with gr.Blocks() as demo:
    with gr.Row():
        selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
        query_input = gr.Textbox(label="Enter Query", value=query_options[-1])
        selected_query.change(update_query, inputs=selected_query, outputs=query_input)
        submit_btn = gr.Button("Submit")
    with gr.Row():
        map_output = gr.Image(label="Map Visualization")
        empty_map_output = gr.Image(label="Empty Visualization")
    with gr.Row():
        satellite_output = gr.Image(label="Generated Satellite Image")
        mask_output = gr.Image(label="Mask")
        image_prompt = gr.Textbox(label="Image Prompt Used")
    submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, empty_map_output, satellite_output, mask_output, image_prompt])

if __name__ == "__main__":
    demo.launch()