Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,591 Bytes
45f7be1 42897ae a52b051 a1a380b a52b051 879a241 6efeffc 45f7be1 6efeffc 45f7be1 a52b051 45f7be1 879a241 45f7be1 a52b051 45f7be1 0c2f440 b1e7b22 0c2f440 36e6906 45f7be1 a52b051 45f7be1 a52b051 45f7be1 a52b051 45f7be1 42897ae a52b051 d6f2bf8 084a1c8 a1a380b 2cf2e45 084a1c8 42897ae 8319e98 42897ae 8319e98 625985a 8319e98 42897ae 625985a 42897ae 8319e98 d6f2bf8 92e64c7 8f22ee9 45f7be1 92e64c7 45f7be1 1b5be08 45f7be1 a52b051 3e8f3e6 a52b051 8319e98 a52b051 36e6906 45f7be1 a5e00fd 9a9b5e3 6ad0561 a5e00fd 45f7be1 a52b051 45f7be1 a52b051 9b980f8 42897ae a52b051 d6f2bf8 9b980f8 36e6906 9b980f8 a52b051 9b980f8 aa6df08 9b980f8 a52b051 681ada7 45f7be1 f219d44 8f22ee9 f219d44 9b980f8 45f7be1 f219d44 45f7be1 681ada7 45f7be1 3647dae 0b075c8 681ada7 45f7be1 36e6906 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import os
import json
import numpy as np
import torch
from PIL import Image, ImageDraw
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from staticmap import StaticMap, CircleMarker, Polygon
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
import logging
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
logger.error(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "\"input\": \"\"\"You are a skilled assistant answering geographical and historical questions. For each question, generate a structured output in JSON format, based on city names without coordinates. The response should include:\
Answer: A concise response to the question.\
Feature Representation: A feature type based on city names (Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection).\
Description: A prompt for a diffusion model describing the what should we draw regarding that.\
\
Handle the following cases:\
\
1. **Single or Multiple Points**: Create a point or a list of points for multiple cities.\
2. **LineString**: Create a line between two cities.\
3. **Polygon**: Represent an area formed by three or more cities (closed). Example: Cities forming a triangle (A, B, C).\
4. **MultiPoint, MultiLineString, MultiPolygon, GeometryCollection**: Use as needed based on the question.\
\
For example, if asked about cities forming a polygon, create a feature like this:\
\
Input: Mark an area with three cities.\
Output: {\"input\": \"Mark an area with three cities.\", \"output\": {\"answer\": \"The cities A, B, and C form a triangle.\", \"feature_representation\": {\"type\": \"Polygon\", \"cities\": [\"A\", \"B\", \"C\"], \"properties\": {\"description\": \"satelite image of a plantation, green fill, 4k, map, detailed, greenary, plants, vegitation, high contrast\"}}}}\
\
Ensure all responses are descriptive and relevant to city names only, without coordinates.\
\"}\"}"
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": query
}
]
}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
for city in city_names:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
if feature_type == "Polygon":
coordinates.append(coordinates[0]) # Close the polygon
return {
"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
}
}]
}
# Generate static map image
@spaces.GPU
def generate_static_map(geojson_data, invisible=False):
# Create a static map object with specified dimensions
m = StaticMap(600, 600)
#log the geojson data
logger.info(f"GeoJSON data: {geojson_data}")
# Process each feature in the GeoJSON
for feature in geojson_data["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
m.add_marker(CircleMarker((coords[0], coords[1]), '#1C00ff00' if invisible == True else 'blue', 1000))
elif geom_type in ["MultiPoint", "LineString"]:
for coord in coords:
m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible == True else 'blue', 1000))
elif geom_type in ["Polygon", "MultiPolygon"]:
for polygon in coords:
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible == True else 'blue', 3))
return m.render() #zoom=10
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
# ZeroGPU compatibility
pipeline.to('cuda')
@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(
prompt=prompt,
image=init_image,
mask_image=mask_image,
control_image=control_image,
strength=0.42,
guidance_scale=62
)
return result.images[0]
# Gradio UI
@spaces.GPU
def handle_query(query):
# Process OpenAI response
response = process_openai_response(query)
geojson_data = generate_geojson(response)
# Generate the main map image
map_image = generate_static_map(geojson_data)
empty_map_image = generate_static_map(geojson_data, invisible=True) # Empty map with the same bounds
# Create the mask
difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
threshold = 10 # Tolerance for difference
mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255
# Convert the mask to a PIL image
mask_image = Image.fromarray(mask, mode="L")
# Generate the satellite image
satellite_image = generate_satellite_image(
empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
)
return map_image, empty_map_image, satellite_image, mask_image, response
def update_query(selected_query):
return selected_query
query_options = [
"Area covering south asian subcontinent",
"Due to considerable rainfall in the up- and mid- stream areas of Kala Oya, the Rajanganaya reservoir is now spilling at a rate of 17,000 cubic feet per second, the department said."
]
# Gradio interface
with gr.Blocks() as demo:
with gr.Row():
selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
query_input = gr.Textbox(label="Enter Query", value=query_options[-1])
selected_query.change(update_query, inputs=selected_query, outputs=query_input)
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
empty_map_output = gr.Image(label="Empty Visualization")
with gr.Row():
satellite_output = gr.Image(label="Generated Satellite Image")
mask_output = gr.Image(label="Mask")
image_prompt = gr.Textbox(label="Image Prompt Used")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, empty_map_output, satellite_output, mask_output, image_prompt])
if __name__ == "__main__":
demo.launch()
|