Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app3.py +110 -0
- chapes-fluides.xlsx +0 -0
- requirements.txt +128 -0
app3.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import re
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import faiss
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
|
9 |
+
|
10 |
+
headers = {"Authorization": "Bearer {API_TOKEN}"}
|
11 |
+
API_URL = "https://api-inference.huggingface.co/models/"
|
12 |
+
df = pd.read_excel('chapes-fluides.xlsx')
|
13 |
+
inference_client = InferenceClient(token=API_TOKEN)
|
14 |
+
|
15 |
+
# Function to vectorize text - assuming this is already defined in your code
|
16 |
+
def create_index(data, text_column, model):
|
17 |
+
# Encode the text column to generate embeddings
|
18 |
+
embeddings = model.encode(data[text_column].tolist())
|
19 |
+
|
20 |
+
# Dimension of embeddings
|
21 |
+
dimension = embeddings.shape[1]
|
22 |
+
|
23 |
+
# Prepare the embeddings and their IDs for FAISS
|
24 |
+
db_vectors = embeddings.astype(np.float32)
|
25 |
+
db_ids = np.arange(len(data)).astype(np.int64)
|
26 |
+
|
27 |
+
# Normalize the embeddings
|
28 |
+
faiss.normalize_L2(db_vectors)
|
29 |
+
|
30 |
+
# Create and configure the FAISS index
|
31 |
+
index = faiss.IndexFlatIP(dimension)
|
32 |
+
index = faiss.IndexIDMap(index)
|
33 |
+
index.add_with_ids(db_vectors, db_ids)
|
34 |
+
|
35 |
+
return index, embeddings
|
36 |
+
|
37 |
+
#Function to vectorize txt, use model.encode
|
38 |
+
def vectorize_text(model, text):
|
39 |
+
# Encode the question to generate its embedding
|
40 |
+
question_embedding = model.encode([text])
|
41 |
+
|
42 |
+
# Convert to float32 for compatibility with FAISS
|
43 |
+
question_embedding = question_embedding.astype(np.float32)
|
44 |
+
|
45 |
+
# Normalize the embedding
|
46 |
+
faiss.normalize_L2(question_embedding)
|
47 |
+
|
48 |
+
return question_embedding
|
49 |
+
|
50 |
+
def extract_context(indices, df,i):
|
51 |
+
# Extracting only the first index
|
52 |
+
index_i = indices[0][i]
|
53 |
+
context = df.iloc[index_i]['text_segment']
|
54 |
+
return context
|
55 |
+
|
56 |
+
def generate_answer_from_context(context, client, model,prompt):
|
57 |
+
try:
|
58 |
+
# Use a hypothetical text generation method if available
|
59 |
+
answer = client.text_generation(prompt=prompt, model=model, max_new_tokens=250)
|
60 |
+
|
61 |
+
answer_cleaned = re.sub(r'^.*Answer:', '', answer).strip()
|
62 |
+
return answer_cleaned
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error encountered: {e}")
|
65 |
+
return None
|
66 |
+
|
67 |
+
|
68 |
+
# Load model
|
69 |
+
model_sentence_transformers = SentenceTransformer('intfloat/multilingual-e5-base')
|
70 |
+
model_reponse_mixtral_instruct="mistralai/Mixtral-8x7B-Instruct-v0.1"
|
71 |
+
|
72 |
+
#Load the index
|
73 |
+
index_reloaded = faiss.read_index("./index/chapes_fluides_e5.index")
|
74 |
+
|
75 |
+
K=2
|
76 |
+
|
77 |
+
# Streamlit app interface
|
78 |
+
st.title("CSTB App")
|
79 |
+
|
80 |
+
if "messages" not in st.session_state:
|
81 |
+
st.session_state.messages = []
|
82 |
+
|
83 |
+
if user_question := st.chat_input("Votre question : "):
|
84 |
+
# Vectorize the user question and search in the FAISS index
|
85 |
+
st.session_state.messages.append({"role": "user", "content": user_question})
|
86 |
+
question_embedding = vectorize_text(model_sentence_transformers, user_question)
|
87 |
+
D, I = index_reloaded.search(question_embedding, K) # question_embedding is already 2D
|
88 |
+
|
89 |
+
# Extract context for the top K results
|
90 |
+
context = extract_context(I, df, 0) + ' ' + extract_context(I, df, 1)
|
91 |
+
prompts = [
|
92 |
+
f"Répondre à cette question : {user_question} en utilisant le contexte suivant {context}. Etre le plus précis possible et ne pas faire de phrase qui ne se finit pas \nReponse:"
|
93 |
+
#Autre prompt possible
|
94 |
+
#f"Contexte: {context}\nQuestion: {user_question}\nReponse:",
|
95 |
+
|
96 |
+
]
|
97 |
+
|
98 |
+
# Generate answers using different prompts
|
99 |
+
answers = [generate_answer_from_context(context, inference_client, model_reponse_mixtral_instruct,prompts[i]) for i in range(len(prompts))]
|
100 |
+
# Display answers
|
101 |
+
for i, answer in enumerate(answers):
|
102 |
+
if answer:
|
103 |
+
st.session_state.messages.append({"role": "assistant", "content": answer})
|
104 |
+
#st.markdown(answer)
|
105 |
+
#st.session_state.messages.append({"role": "assistant", "content": answer})
|
106 |
+
else:
|
107 |
+
st.session_state.messages.append({"role": "assistant", "content": "Failed to generate an answer."})
|
108 |
+
for message in st.session_state.messages:
|
109 |
+
with st.chat_message(message["role"]):
|
110 |
+
st.markdown(message["content"])
|
chapes-fluides.xlsx
ADDED
Binary file (61.7 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.0.0
|
2 |
+
altair==5.2.0
|
3 |
+
asttokens==2.4.1
|
4 |
+
astunparse==1.6.3
|
5 |
+
attrs==23.2.0
|
6 |
+
blinker==1.7.0
|
7 |
+
cachetools==5.3.2
|
8 |
+
certifi==2023.11.17
|
9 |
+
charset-normalizer==3.3.2
|
10 |
+
click==8.1.7
|
11 |
+
colorama==0.4.6
|
12 |
+
comm==0.2.0
|
13 |
+
debugpy==1.8.0
|
14 |
+
decorator==5.1.1
|
15 |
+
distlib==0.3.8
|
16 |
+
et-xmlfile==1.1.0
|
17 |
+
exceptiongroup==1.2.0
|
18 |
+
executing==2.0.1
|
19 |
+
faiss-cpu==1.7.4
|
20 |
+
filelock==3.13.1
|
21 |
+
flatbuffers==23.5.26
|
22 |
+
fsspec==2023.12.2
|
23 |
+
gast==0.4.0
|
24 |
+
gitdb==4.0.11
|
25 |
+
GitPython==3.1.40
|
26 |
+
google-auth==2.25.2
|
27 |
+
google-auth-oauthlib==1.2.0
|
28 |
+
google-pasta==0.2.0
|
29 |
+
grpcio==1.60.0
|
30 |
+
h5py==3.10.0
|
31 |
+
huggingface-hub==0.19.4
|
32 |
+
idna==3.6
|
33 |
+
importlib-metadata==6.11.0
|
34 |
+
ipykernel==6.27.1
|
35 |
+
ipython==8.18.1
|
36 |
+
jedi==0.19.1
|
37 |
+
Jinja2==3.1.2
|
38 |
+
joblib==1.3.2
|
39 |
+
jsonschema==4.20.0
|
40 |
+
jsonschema-specifications==2023.12.1
|
41 |
+
jupyter_client==8.6.0
|
42 |
+
jupyter_core==5.5.0
|
43 |
+
keras==2.15.0
|
44 |
+
Keras-Preprocessing==1.1.2
|
45 |
+
libclang==16.0.6
|
46 |
+
Markdown==3.5.1
|
47 |
+
markdown-it-py==3.0.0
|
48 |
+
MarkupSafe==2.1.3
|
49 |
+
matplotlib-inline==0.1.6
|
50 |
+
mdurl==0.1.2
|
51 |
+
ml-dtypes==0.2.0
|
52 |
+
mpmath==1.3.0
|
53 |
+
nest-asyncio==1.5.8
|
54 |
+
networkx==3.2.1
|
55 |
+
nltk==3.8.1
|
56 |
+
numpy==1.26.2
|
57 |
+
oauthlib==3.2.2
|
58 |
+
openpyxl==3.1.2
|
59 |
+
opt-einsum==3.3.0
|
60 |
+
packaging==23.2
|
61 |
+
pandas==2.1.4
|
62 |
+
parso==0.8.3
|
63 |
+
pillow==10.2.0
|
64 |
+
platformdirs==4.1.0
|
65 |
+
prompt-toolkit==3.0.43
|
66 |
+
protobuf==4.23.4
|
67 |
+
psutil==5.9.7
|
68 |
+
pure-eval==0.2.2
|
69 |
+
pyarrow==14.0.2
|
70 |
+
pyasn1==0.5.1
|
71 |
+
pyasn1-modules==0.3.0
|
72 |
+
pydeck==0.8.1b0
|
73 |
+
Pygments==2.17.2
|
74 |
+
PyMuPDF==1.23.7
|
75 |
+
PyMuPDFb==1.23.7
|
76 |
+
python-dateutil==2.8.2
|
77 |
+
pytz==2023.3.post1
|
78 |
+
pywin32==306
|
79 |
+
PyYAML==6.0.1
|
80 |
+
pyzmq==25.1.2
|
81 |
+
referencing==0.32.0
|
82 |
+
regex==2023.10.3
|
83 |
+
requests==2.31.0
|
84 |
+
requests-oauthlib==1.3.1
|
85 |
+
rich==13.7.0
|
86 |
+
rpds-py==0.16.2
|
87 |
+
rsa==4.9
|
88 |
+
safetensors==0.4.1
|
89 |
+
scikit-learn==1.3.2
|
90 |
+
scipy==1.11.4
|
91 |
+
sentence-transformers==2.2.2
|
92 |
+
sentencepiece==0.1.99
|
93 |
+
six==1.16.0
|
94 |
+
smmap==5.0.1
|
95 |
+
stack-data==0.6.3
|
96 |
+
streamlit==1.29.0
|
97 |
+
sympy==1.12
|
98 |
+
tenacity==8.2.3
|
99 |
+
tensorboard==2.15.1
|
100 |
+
tensorboard-data-server==0.7.2
|
101 |
+
tensorboard-plugin-wit==1.8.1
|
102 |
+
tensorflow==2.10.1
|
103 |
+
tensorflow-estimator==2.15.0
|
104 |
+
tensorflow-hub==0.15.0
|
105 |
+
tensorflow-io-gcs-filesystem==0.31.0
|
106 |
+
tensorflow-text==2.10.0
|
107 |
+
termcolor==2.4.0
|
108 |
+
threadpoolctl==3.2.0
|
109 |
+
tokenizers==0.15.0
|
110 |
+
toml==0.10.2
|
111 |
+
toolz==0.12.0
|
112 |
+
torch==2.1.2
|
113 |
+
torchvision==0.16.2
|
114 |
+
tornado==6.4
|
115 |
+
tqdm==4.66.1
|
116 |
+
traitlets==5.14.0
|
117 |
+
transformers==4.36.2
|
118 |
+
typing_extensions==4.9.0
|
119 |
+
tzdata==2023.3
|
120 |
+
tzlocal==5.2
|
121 |
+
urllib3==2.1.0
|
122 |
+
validators==0.22.0
|
123 |
+
virtualenv==20.25.0
|
124 |
+
watchdog==3.0.0
|
125 |
+
wcwidth==0.2.12
|
126 |
+
Werkzeug==3.0.1
|
127 |
+
wrapt==1.14.1
|
128 |
+
zipp==3.17.0
|