Spaces:
Sleeping
Sleeping
import streamlit as st | |
from huggingface_hub import InferenceClient | |
import re | |
import pandas as pd | |
import numpy as np | |
import faiss | |
from sentence_transformers import SentenceTransformer | |
headers = {"Authorization": "Bearer {API_TOKEN}"} | |
API_URL = "https://api-inference.huggingface.co/models/" | |
df = pd.read_excel('chapes-fluides.xlsx') | |
inference_client = InferenceClient(token=API_TOKEN) | |
# Function to vectorize text - assuming this is already defined in your code | |
def create_index(data, text_column, model): | |
# Encode the text column to generate embeddings | |
embeddings = model.encode(data[text_column].tolist()) | |
# Dimension of embeddings | |
dimension = embeddings.shape[1] | |
# Prepare the embeddings and their IDs for FAISS | |
db_vectors = embeddings.astype(np.float32) | |
db_ids = np.arange(len(data)).astype(np.int64) | |
# Normalize the embeddings | |
faiss.normalize_L2(db_vectors) | |
# Create and configure the FAISS index | |
index = faiss.IndexFlatIP(dimension) | |
index = faiss.IndexIDMap(index) | |
index.add_with_ids(db_vectors, db_ids) | |
return index, embeddings | |
#Function to vectorize txt, use model.encode | |
def vectorize_text(model, text): | |
# Encode the question to generate its embedding | |
question_embedding = model.encode([text]) | |
# Convert to float32 for compatibility with FAISS | |
question_embedding = question_embedding.astype(np.float32) | |
# Normalize the embedding | |
faiss.normalize_L2(question_embedding) | |
return question_embedding | |
def extract_context(indices, df,i): | |
# Extracting only the first index | |
index_i = indices[0][i] | |
context = df.iloc[index_i]['text_segment'] | |
return context | |
def generate_answer_from_context(context, client, model,prompt): | |
try: | |
# Use a hypothetical text generation method if available | |
answer = client.text_generation(prompt=prompt, model=model, max_new_tokens=250) | |
answer_cleaned = re.sub(r'^.*Answer:', '', answer).strip() | |
return answer_cleaned | |
except Exception as e: | |
print(f"Error encountered: {e}") | |
return None | |
# Load model | |
model_sentence_transformers = SentenceTransformer('intfloat/multilingual-e5-base') | |
model_reponse_mixtral_instruct="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
#Load the index | |
index_reloaded = faiss.read_index("./index/chapes_fluides_e5.index") | |
K=2 | |
# Streamlit app interface | |
st.title("CSTB App") | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if user_question := st.chat_input("Votre question : "): | |
# Vectorize the user question and search in the FAISS index | |
st.session_state.messages.append({"role": "user", "content": user_question}) | |
question_embedding = vectorize_text(model_sentence_transformers, user_question) | |
D, I = index_reloaded.search(question_embedding, K) # question_embedding is already 2D | |
# Extract context for the top K results | |
context = extract_context(I, df, 0) + ' ' + extract_context(I, df, 1) | |
prompts = [ | |
f"Répondre à cette question : {user_question} en utilisant le contexte suivant {context}. Etre le plus précis possible et ne pas faire de phrase qui ne se finit pas \nReponse:" | |
#Autre prompt possible | |
#f"Contexte: {context}\nQuestion: {user_question}\nReponse:", | |
] | |
# Generate answers using different prompts | |
answers = [generate_answer_from_context(context, inference_client, model_reponse_mixtral_instruct,prompts[i]) for i in range(len(prompts))] | |
# Display answers | |
for i, answer in enumerate(answers): | |
if answer: | |
st.session_state.messages.append({"role": "assistant", "content": answer}) | |
#st.markdown(answer) | |
#st.session_state.messages.append({"role": "assistant", "content": answer}) | |
else: | |
st.session_state.messages.append({"role": "assistant", "content": "Failed to generate an answer."}) | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |