import gradio as gr import os from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread # Set an environment variable HF_TOKEN = os.environ.get("HF_TOKEN", None) DESCRIPTION = '''

AI Lawyer

This Space demonstrates the instruction-tuned model StevenChen16/llama3-8b-Lawyer. This model is fine-tuned to provide legal information and assist with a wide range of legal questions. Feel free to ask anything!

''' LICENSE = """

--- Built with model "StevenChen16/Llama3-8B-Lawyer", based on "meta-llama/Meta-Llama-3-8B" """ PLACEHOLDER = """

AI Lawyer

Ask me anything about US and Canada law...

""" css = """ h1 { text-align: center; display: block; } #duplicate-button { margin: auto; color: white; background: #1565c0; border-radius: 100vh; } """ # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("StevenChen16/llama3-8b-Lawyer") model = AutoModelForCausalLM.from_pretrained("StevenChen16/llama3-8b-Lawyer", device_map="auto") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("") ] def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str: conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Gradio block chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") gr.ChatInterface( fn=chat_llama3_8b, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], examples=[ ['What are the key differences between a sole proprietorship and a partnership?'], ['What legal steps should I take if I want to start a business in the US?'], ['Can you explain the concept of "duty of care" in negligence law?'], ['What are the legal requirements for obtaining a patent in Canada?'], ['How can I protect my intellectual property when sharing my idea with potential investors?'] ], cache_examples=False, ) gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch(share=True)