|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import os |
|
from constants import LEADERBOARD_CSS, EXPLANATION, EXPLANATION_EDACC, EXPLANATION_AFRI |
|
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub |
|
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message |
|
from datetime import datetime, timezone |
|
from huggingface_hub import HfApi, upload_file |
|
|
|
LAST_UPDATED = "Nov 22th 2024" |
|
|
|
column_names = { |
|
"model": "Model", |
|
"Average WER ⬇️": "Average WER ⬇️", |
|
"Average Female WER ⬇️": "Average Female WER ⬇️", |
|
"Average Male WER ⬇️": "Average Male WER ⬇️", |
|
"RTFx": "RTFx ⬆️️", |
|
"Bulgarian_female": "Bulgarian female", |
|
"Bulgarian_male": "Bulgarian male", |
|
"Catalan_female": "Catalan female", |
|
"Chinese_female": "Chinese female", |
|
"Chinese_male": "Chinese male", |
|
"Eastern_European_male": "Eastern European male", |
|
"European_male": "European male", |
|
"French_female": "French female", |
|
"Ghanain_English_female": "Ghanain English female", |
|
"Indian_English_female": "Indian English female", |
|
"Indian_English_male": "Indian English male", |
|
"Indonesian_female": "Indonesian female", |
|
"Irish_English_female": "Irish English female", |
|
"Irish_English_male": "Irish English male", |
|
"Israeli_male": "Israeli male", |
|
"Italian_female": "Italian female", |
|
"Jamaican_English_female": "Jamaican English female", |
|
"Jamaican_English_male": "Jamaican English male", |
|
"Kenyan_English_female": "Kenyan English female", |
|
"Kenyan_English_male": "Kenyan English male", |
|
"Latin_American_female": "Latin American female", |
|
"Latin_American_male": "Latin American male", |
|
"Lithuanian_male": "Lithuanian male", |
|
"Mainstream_US_English_female": "Mainstream US English female", |
|
"Mainstream_US_English_male": "Mainstream US English male", |
|
"Nigerian_English_female": "Nigerian English female", |
|
"Nigerian_English_male": "Nigerian English male", |
|
"Romanian_female": "Romanian female", |
|
"Scottish_English_male": "Scottish English male", |
|
"Southern_British_English_male": "Southern British English male", |
|
"Spanish_female": "Spanish female", |
|
"Spanish_male": "Spanish male", |
|
"Vietnamese_female": "Vietnamese female", |
|
"Vietnamese_male": "Vietnamese male", |
|
"agatu_test": "Agatu", |
|
"angas_test": "Angas", |
|
"bajju_test": "Bajju", |
|
"bini_test": "Bini", |
|
"brass_test": "Brass", |
|
"delta_test": "Delta", |
|
"eggon_test": "Eggon", |
|
"ekene_test": "Ekene", |
|
"ekpeye_test": "Ekpeye", |
|
"gbagyi_test": "Gbagyi", |
|
"igarra_test": "Igarra", |
|
"ijaw-nembe_test": "Ijaw-Nembe", |
|
"ikulu_test": "Ikulu", |
|
"jaba_test": "Jaba", |
|
"jukun_test": "Jukun", |
|
"khana_test": "Khana", |
|
"mada_test": "Mada", |
|
"mwaghavul_test": "Mwaghavul", |
|
"ukwuani_test": "Ukwuani", |
|
"yoruba-hausa_test": "Yoruba-Hausa", |
|
} |
|
|
|
african_cols = ["Ghanain English female", "Kenyan English female", "Kenyan English male", "Nigerian English female", "Nigerian English male"] |
|
north_american_cols = ["Mainstream US English female", "Mainstream US English male"] |
|
caribbean_cols = ["Jamaican English female", "Jamaican English male"] |
|
latin_american_cols = ["Latin American female", "Latin American male"] |
|
british_cols = ["Irish English female", "Irish English male", "Scottish English male", "Southern British English male"] |
|
european_cols = ["Eastern European male", "European male", "French female", "Italian female", "Spanish female", "Spanish male", "Catalan female", "Bulgarian female", "Bulgarian male", "Lithuanian male", "Romanian female"] |
|
asian_cols = ["Chinese female", "Chinese male", "Indonesian female", "Vietnamese female", "Vietnamese male", "Indian English female", "Indian English male"] |
|
eval_queue_repo_edacc, requested_models, csv_results_edacc, csv_results_afrispeech = load_all_info_from_dataset_hub() |
|
|
|
if not csv_results_edacc.exists(): |
|
raise Exception(f"CSV file {csv_results_edacc} does not exist locally") |
|
|
|
|
|
original_df = pd.read_csv(csv_results_edacc) |
|
|
|
afrispeech_df = pd.read_csv(csv_results_afrispeech) |
|
|
|
|
|
def formatter(x): |
|
if type(x) is str: |
|
x = x |
|
else: |
|
x = round(x, 2) |
|
return x |
|
|
|
for col in original_df.columns: |
|
if col == "model": |
|
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) |
|
else: |
|
original_df[col] = original_df[col].apply(formatter) |
|
|
|
for col in afrispeech_df.columns: |
|
if col == "model": |
|
afrispeech_df[col] = afrispeech_df[col].apply(lambda x: x.replace(x, make_clickable_model(x))) |
|
else: |
|
afrispeech_df[col] = afrispeech_df[col].apply(formatter) |
|
|
|
original_df.rename(columns=column_names, inplace=True) |
|
original_df.sort_values(by='Average WER ⬇️', inplace=True) |
|
afrispeech_df.rename(columns=column_names, inplace=True) |
|
afrispeech_df.sort_values(by='Average WER ⬇️', inplace=True) |
|
|
|
female_cols = [col for col in original_df.columns if 'female' == col.split(' ')[-1]] |
|
male_cols = [col for col in original_df.columns if 'male' == col.split(' ')[-1]] |
|
|
|
|
|
male_df = original_df[['Model'] + male_cols].copy() |
|
male_df.loc[:, 'Average Male WER ⬇️'] = male_df[male_cols].mean(axis=1) |
|
male_df.loc[:, 'Average Male WER ⬇️'] = male_df['Average Male WER ⬇️'].apply(formatter) |
|
male_df = male_df[['Model', 'Average Male WER ⬇️'] + male_cols] |
|
|
|
|
|
female_df = original_df[['Model'] + female_cols].copy() |
|
female_df.loc[:, 'Average Female WER ⬇️'] = female_df[female_cols].mean(axis=1) |
|
female_df.loc[:, 'Average Female WER ⬇️'] = female_df['Average Female WER ⬇️'].apply(formatter) |
|
female_df = female_df[['Model', 'Average Female WER ⬇️'] + female_cols] |
|
|
|
african_df = original_df[['Model'] + african_cols].copy() |
|
african_df.loc[:, 'Average African WER ⬇️'] = african_df[african_cols].mean(axis=1) |
|
african_df.loc[:, 'Average African WER ⬇️'] = african_df['Average African WER ⬇️'].apply(formatter) |
|
african_df = african_df[['Model', 'Average African WER ⬇️'] + african_cols] |
|
|
|
north_american_df = original_df[['Model'] + north_american_cols].copy() |
|
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df[north_american_cols].mean(axis=1) |
|
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df['Average North American WER ⬇️'].apply(formatter) |
|
north_american_df = north_american_df[['Model', 'Average North American WER ⬇️'] + north_american_cols] |
|
|
|
caribbean_df = original_df[['Model'] + caribbean_cols].copy() |
|
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df[caribbean_cols].mean(axis=1) |
|
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df['Average Caribbean WER ⬇️'].apply(formatter) |
|
caribbean_df = caribbean_df[['Model', 'Average Caribbean WER ⬇️'] + caribbean_cols] |
|
|
|
latin_american_df = original_df[['Model'] + latin_american_cols].copy() |
|
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df[latin_american_cols].mean(axis=1) |
|
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df['Average Latin American WER ⬇️'].apply(formatter) |
|
latin_american_df = latin_american_df[['Model', 'Average Latin American WER ⬇️'] + latin_american_cols] |
|
|
|
british_df = original_df[['Model'] + british_cols].copy() |
|
british_df.loc[:, 'Average British WER ⬇️'] = british_df[british_cols].mean(axis=1) |
|
british_df.loc[:, 'Average British WER ⬇️'] = british_df['Average British WER ⬇️'].apply(formatter) |
|
british_df = british_df[['Model', 'Average British WER ⬇️'] + british_cols] |
|
|
|
european_df = original_df[['Model'] + european_cols].copy() |
|
european_df.loc[:, 'Average European WER ⬇️'] = european_df[european_cols].mean(axis=1) |
|
european_df.loc[:, 'Average European WER ⬇️'] = european_df['Average European WER ⬇️'].apply(formatter) |
|
european_df = european_df[['Model', 'Average European WER ⬇️'] + european_cols] |
|
|
|
asian_df = original_df[['Model'] + asian_cols].copy() |
|
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df[asian_cols].mean(axis=1) |
|
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df['Average Asian WER ⬇️'].apply(formatter) |
|
asian_df = asian_df[['Model', 'Average Asian WER ⬇️'] + asian_cols] |
|
|
|
|
|
|
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average African WER ⬇️', african_df['Average African WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average North American WER ⬇️', north_american_df['Average North American WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Caribbean WER ⬇️', caribbean_df['Average Caribbean WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Latin American WER ⬇️', latin_american_df['Average Latin American WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average British WER ⬇️', british_df['Average British WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average European WER ⬇️', european_df['Average European WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Asian WER ⬇️', asian_df['Average Asian WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Female WER ⬇️', female_df['Average Female WER ⬇️']) |
|
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Male WER ⬇️', male_df['Average Male WER ⬇️']) |
|
|
|
|
|
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S") |
|
temp_csv_filename = f"updated_leaderboard_{timestamp}.csv" |
|
original_df.to_csv(temp_csv_filename, index=False) |
|
|
|
|
|
hf_api = HfApi() |
|
repo_id = "Steveeeeeeen/whisper-leaderboard-evals" |
|
TOKEN_HUB = os.environ.get("TOKEN_HUB", None) |
|
|
|
upload_file( |
|
path_or_fileobj=temp_csv_filename, |
|
path_in_repo=f"data/{temp_csv_filename}", |
|
repo_id=repo_id, |
|
token=TOKEN_HUB, |
|
repo_type="dataset" |
|
) |
|
|
|
print(f"Updated leaderboard uploaded to Hugging Face: {repo_id}/data/{temp_csv_filename}") |
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
TYPES = [c.type for c in fields(AutoEvalColumn)] |
|
|
|
with gr.Blocks(css=LEADERBOARD_CSS) as demo: |
|
|
|
|
|
gr.Markdown("<h1>🤫 How Biased is Whisper?</h1>", elem_classes="markdown-text") |
|
|
|
|
|
gr.Markdown(EXPLANATION, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("🏅 Edacc Results", elem_id="od-benchmark-tab-table", id=0): |
|
gr.Markdown(EXPLANATION_EDACC, elem_classes="markdown-text") |
|
|
|
column_filter = gr.Dropdown( |
|
choices=["All", "Female", "Male", "African", "North American", "Caribbean", "Latin American", "British", "European", "Asian"] + [v for k,v in column_names.items() if k != "model"], |
|
label="Filter by column", |
|
multiselect=True, |
|
value=["All"], |
|
elem_id="column-filter" |
|
) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=original_df, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
def update_table(cols): |
|
|
|
view_mapping = { |
|
"All": original_df, |
|
"Female": female_df, |
|
"Male": male_df, |
|
"African": african_df, |
|
"North American": north_american_df, |
|
"Caribbean": caribbean_df, |
|
"Latin American": latin_american_df, |
|
"British": british_df, |
|
"European": european_df, |
|
"Asian": asian_df |
|
} |
|
|
|
|
|
selected_special_views = [view for view in view_mapping.keys() if view in cols] |
|
|
|
if selected_special_views: |
|
|
|
result_cols = set(view_mapping[selected_special_views[0]].columns) |
|
|
|
|
|
for view in selected_special_views[1:]: |
|
result_cols.update(view_mapping[view].columns) |
|
|
|
|
|
result_cols = ["Model"] + sorted(list(result_cols - {"Model"})) |
|
|
|
|
|
return gr.Dataframe(value=original_df[result_cols]) |
|
|
|
|
|
selected_cols = ["Model"] + cols |
|
return gr.Dataframe(value=original_df[selected_cols]) |
|
|
|
column_filter.change( |
|
fn=update_table, |
|
inputs=[column_filter], |
|
outputs=[leaderboard_table] |
|
) |
|
|
|
with gr.TabItem("🏅 Afrispeech Results", elem_id="od-benchmark-tab-table", id=1): |
|
gr.Markdown(EXPLANATION_AFRI, elem_classes="markdown-text") |
|
|
|
afrispeech_column_filter = gr.Dropdown( |
|
choices=["All"] + [v for k,v in column_names.items() if k != "model" and v in afrispeech_df.columns], |
|
label="Filter by column", |
|
multiselect=True, |
|
value=["All"], |
|
elem_id="afrispeech-column-filter" |
|
) |
|
|
|
leaderboard_table = gr.components.Dataframe( |
|
value=afrispeech_df, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
def update_afrispeech_table(cols): |
|
if "All" in cols: |
|
return gr.Dataframe(value=afrispeech_df) |
|
|
|
selected_cols = ["Model"] + cols |
|
return gr.Dataframe(value=afrispeech_df[selected_cols]) |
|
|
|
afrispeech_column_filter.change( |
|
fn=update_afrispeech_table, |
|
inputs=[afrispeech_column_filter], |
|
outputs=[leaderboard_table] |
|
) |
|
|
|
demo.launch(ssr_mode=False) |
|
|