Spaces:
Sleeping
Sleeping
Commit
Β·
2cd8aed
1
Parent(s):
d4156a9
adding proprietary models
Browse files
app.py
CHANGED
@@ -142,19 +142,43 @@ def request_model(model_text, chbcoco2017):
|
|
142 |
except Exception as e:
|
143 |
return styled_error(f"Error submitting request!")
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
|
146 |
gr.HTML(BANNER, elem_id="banner")
|
147 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
148 |
|
149 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
150 |
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
|
|
|
151 |
leaderboard_table = gr.components.Dataframe(
|
152 |
value=original_df,
|
153 |
datatype=TYPES,
|
154 |
elem_id="leaderboard-table",
|
155 |
interactive=False,
|
156 |
visible=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
with gr.TabItem("π Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1):
|
159 |
gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text")
|
160 |
gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text")
|
|
|
142 |
except Exception as e:
|
143 |
return styled_error(f"Error submitting request!")
|
144 |
|
145 |
+
def filter_main_table(show_proprietary=True):
|
146 |
+
filtered_df = original_df.copy()
|
147 |
+
|
148 |
+
# Filter proprietary models if needed
|
149 |
+
if not show_proprietary and "License" in filtered_df.columns:
|
150 |
+
# Keep only models with "Open" license
|
151 |
+
filtered_df = filtered_df[filtered_df["License"] == "Open"]
|
152 |
+
|
153 |
+
return filtered_df
|
154 |
+
|
155 |
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
|
156 |
gr.HTML(BANNER, elem_id="banner")
|
157 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
158 |
|
159 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
160 |
with gr.TabItem("π
Leaderboard", elem_id="od-benchmark-tab-table", id=0):
|
161 |
+
|
162 |
leaderboard_table = gr.components.Dataframe(
|
163 |
value=original_df,
|
164 |
datatype=TYPES,
|
165 |
elem_id="leaderboard-table",
|
166 |
interactive=False,
|
167 |
visible=True,
|
168 |
+
)
|
169 |
+
with gr.Row():
|
170 |
+
show_proprietary_checkbox = gr.Checkbox(
|
171 |
+
label="Show proprietary models",
|
172 |
+
value=True,
|
173 |
+
elem_id="show-proprietary-checkbox"
|
174 |
)
|
175 |
+
|
176 |
+
# Connect checkbox to the filtering function
|
177 |
+
show_proprietary_checkbox.change(
|
178 |
+
filter_main_table,
|
179 |
+
inputs=[show_proprietary_checkbox],
|
180 |
+
outputs=leaderboard_table
|
181 |
+
)
|
182 |
with gr.TabItem("π Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1):
|
183 |
gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text")
|
184 |
gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text")
|
init.py
CHANGED
@@ -4,7 +4,7 @@ from pathlib import Path
|
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
|
6 |
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
|
7 |
-
QUEUE_REPO = os.environ.get("QUEUE_REPO", "
|
8 |
QUEUE_REPO_WHISPER = os.environ.get("QUEUE_REPO_WHISPER", "Steveeeeeeen/whisper-leaderboard-evals")
|
9 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", "results")
|
10 |
QUEUE_PATH_WHISPER = os.environ.get("QUEUE_PATH_WHISPER", "whisper-results")
|
|
|
4 |
from huggingface_hub import HfApi, Repository
|
5 |
|
6 |
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
|
7 |
+
QUEUE_REPO = os.environ.get("QUEUE_REPO", "Steveeeeeeen/leaderboard_evals")
|
8 |
QUEUE_REPO_WHISPER = os.environ.get("QUEUE_REPO_WHISPER", "Steveeeeeeen/whisper-leaderboard-evals")
|
9 |
QUEUE_PATH = os.environ.get("QUEUE_PATH", "results")
|
10 |
QUEUE_PATH_WHISPER = os.environ.get("QUEUE_PATH_WHISPER", "whisper-results")
|