Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
from xcodec2.modeling_xcodec2 import XCodec2Model
|
6 |
+
import torchaudio
|
7 |
+
import gradio as gr
|
8 |
+
import tempfile
|
9 |
+
|
10 |
+
import os
|
11 |
+
api_key = os.getenv("HF_TOKEN")
|
12 |
+
|
13 |
+
from huggingface_hub import login
|
14 |
+
login(token=api_key)
|
15 |
+
|
16 |
+
llasa_3b ='Steveeeeeeen/Llasagna-v0.1'
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
|
19 |
+
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
llasa_3b,
|
22 |
+
trust_remote_code=True,
|
23 |
+
device_map='cuda',
|
24 |
+
)
|
25 |
+
|
26 |
+
model_path = "srinivasbilla/xcodec2"
|
27 |
+
|
28 |
+
Codec_model = XCodec2Model.from_pretrained(model_path)
|
29 |
+
Codec_model.eval().cuda()
|
30 |
+
|
31 |
+
whisper_turbo_pipe = pipeline(
|
32 |
+
"automatic-speech-recognition",
|
33 |
+
model="openai/whisper-large-v3-turbo",
|
34 |
+
torch_dtype=torch.float16,
|
35 |
+
device='cuda',
|
36 |
+
)
|
37 |
+
|
38 |
+
SPEAKERS = {
|
39 |
+
"Male 1": {
|
40 |
+
"path": "speakers/female_1.mp3",
|
41 |
+
"transcript": "e lo stesso alessi che andò ad aprire non riconobbe antoni il quale tornava con la sporta sotto il braccio tanto era mutato coperto di polvere e con la barba lungacome fu entrato e si fu messo a sedere in un cantuccio non osavano quasi fargli festa.",
|
42 |
+
"description": "Una voce femminile.",
|
43 |
+
},
|
44 |
+
}
|
45 |
+
|
46 |
+
def preview_speaker(display_name):
|
47 |
+
"""Returns the audio and transcript for preview"""
|
48 |
+
speaker_name = speaker_display_dict[display_name]
|
49 |
+
if speaker_name in SPEAKERS:
|
50 |
+
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"])
|
51 |
+
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"]
|
52 |
+
return None, ""
|
53 |
+
|
54 |
+
|
55 |
+
def ids_to_speech_tokens(speech_ids):
|
56 |
+
|
57 |
+
speech_tokens_str = []
|
58 |
+
for speech_id in speech_ids:
|
59 |
+
speech_tokens_str.append(f"<|s_{speech_id}|>")
|
60 |
+
return speech_tokens_str
|
61 |
+
|
62 |
+
def extract_speech_ids(speech_tokens_str):
|
63 |
+
|
64 |
+
speech_ids = []
|
65 |
+
for token_str in speech_tokens_str:
|
66 |
+
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
67 |
+
num_str = token_str[4:-2]
|
68 |
+
|
69 |
+
num = int(num_str)
|
70 |
+
speech_ids.append(num)
|
71 |
+
else:
|
72 |
+
print(f"Unexpected token: {token_str}")
|
73 |
+
return speech_ids
|
74 |
+
|
75 |
+
@spaces.GPU(duration=60)
|
76 |
+
def infer(sample_audio_path, target_text, progress=gr.Progress()):
|
77 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
78 |
+
progress(0, 'Loading and trimming audio...')
|
79 |
+
waveform, sample_rate = torchaudio.load(sample_audio_path)
|
80 |
+
if len(waveform[0])/sample_rate > 15:
|
81 |
+
gr.Warning("Trimming audio to first 15secs.")
|
82 |
+
waveform = waveform[:, :sample_rate*15]
|
83 |
+
|
84 |
+
# Check if the audio is stereo (i.e., has more than one channel)
|
85 |
+
if waveform.size(0) > 1:
|
86 |
+
# Convert stereo to mono by averaging the channels
|
87 |
+
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
|
88 |
+
else:
|
89 |
+
# If already mono, just use the original waveform
|
90 |
+
waveform_mono = waveform
|
91 |
+
|
92 |
+
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
|
93 |
+
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
|
94 |
+
progress(0.5, 'Transcribed! Generating speech...')
|
95 |
+
|
96 |
+
if len(target_text) == 0:
|
97 |
+
return None
|
98 |
+
elif len(target_text) > 300:
|
99 |
+
gr.Warning("Text is too long. Please keep it under 300 characters.")
|
100 |
+
target_text = target_text[:300]
|
101 |
+
|
102 |
+
input_text = prompt_text + ' ' + target_text
|
103 |
+
|
104 |
+
#TTS start!
|
105 |
+
with torch.no_grad():
|
106 |
+
# Encode the prompt wav
|
107 |
+
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
|
108 |
+
|
109 |
+
vq_code_prompt = vq_code_prompt[0,0,:]
|
110 |
+
# Convert int 12345 to token <|s_12345|>
|
111 |
+
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
|
112 |
+
|
113 |
+
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
|
114 |
+
|
115 |
+
# Tokenize the text and the speech prefix
|
116 |
+
chat = [
|
117 |
+
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
|
118 |
+
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
|
119 |
+
]
|
120 |
+
|
121 |
+
input_ids = tokenizer.apply_chat_template(
|
122 |
+
chat,
|
123 |
+
tokenize=True,
|
124 |
+
return_tensors='pt',
|
125 |
+
continue_final_message=True
|
126 |
+
)
|
127 |
+
input_ids = input_ids.to('cuda')
|
128 |
+
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
|
129 |
+
|
130 |
+
# Generate the speech autoregressively
|
131 |
+
outputs = model.generate(
|
132 |
+
input_ids,
|
133 |
+
max_length=2048, # We trained our model with a max length of 2048
|
134 |
+
eos_token_id= speech_end_id ,
|
135 |
+
do_sample=True,
|
136 |
+
top_p=1,
|
137 |
+
temperature=0.8
|
138 |
+
)
|
139 |
+
# Extract the speech tokens
|
140 |
+
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
|
141 |
+
|
142 |
+
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
143 |
+
|
144 |
+
# Convert token <|s_23456|> to int 23456
|
145 |
+
speech_tokens = extract_speech_ids(speech_tokens)
|
146 |
+
|
147 |
+
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
|
148 |
+
|
149 |
+
# Decode the speech tokens to speech waveform
|
150 |
+
gen_wav = Codec_model.decode_code(speech_tokens)
|
151 |
+
|
152 |
+
# if only need the generated part
|
153 |
+
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
|
154 |
+
|
155 |
+
progress(1, 'Synthesized!')
|
156 |
+
|
157 |
+
return (16000, gen_wav[0, 0, :].cpu().numpy())
|
158 |
+
|
159 |
+
with gr.Blocks() as app_tts:
|
160 |
+
gr.Markdown("# Zero Shot Voice Clone TTS")
|
161 |
+
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
162 |
+
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
163 |
+
|
164 |
+
generate_btn = gr.Button("Synthesize", variant="primary")
|
165 |
+
|
166 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
167 |
+
|
168 |
+
generate_btn.click(
|
169 |
+
infer,
|
170 |
+
inputs=[
|
171 |
+
ref_audio_input,
|
172 |
+
gen_text_input,
|
173 |
+
],
|
174 |
+
outputs=[audio_output],
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Blocks() as app_credits:
|
178 |
+
gr.Markdown("""
|
179 |
+
# Credits
|
180 |
+
|
181 |
+
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
|
182 |
+
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
183 |
+
""")
|
184 |
+
|
185 |
+
with gr.Blocks() as app:
|
186 |
+
gr.HTML("<img src='https://huggingface.co/datasets/Steveeeeeeen/random_images/blob/main/llasagna.png' alt='Llasagna' style='width: 100%; height: auto;'>", elem_id="banner")
|
187 |
+
gr.Markdown(
|
188 |
+
"""
|
189 |
+
# Llasagna 1b TTS
|
190 |
+
|
191 |
+
This is a local web UI for Llasagna 1b Zero Shot Voice Cloning and TTS model.
|
192 |
+
|
193 |
+
The checkpoints support English and Chinese.
|
194 |
+
|
195 |
+
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
196 |
+
"""
|
197 |
+
)
|
198 |
+
gr.TabbedInterface([app_tts], ["TTS"])
|
199 |
+
|
200 |
+
|
201 |
+
app.launch(ssr_mode=False, share=True)
|