Llasagna-1b-tts / app.py
Steveeeeeeen's picture
Steveeeeeeen HF staff
Update app.py
22b9e3b verified
raw
history blame
8.11 kB
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
import os
api_key = os.getenv("HF_TOKEN")
from huggingface_hub import login
login(token=api_key)
llasa_3b ='Steveeeeeeen/Llasagna-v0.1'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(
llasa_3b,
trust_remote_code=True,
device_map='cuda',
)
model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device='cuda',
)
SPEAKERS = {
"Female 1": {
"path": "speakers/female_1.mp3",
"transcript": "e lo stesso alessi che andò ad aprire non riconobbe antoni il quale tornava con la sporta sotto il braccio tanto era mutato coperto di polvere e con la barba lungacome fu entrato e si fu messo a sedere in un cantuccio non osavano quasi fargli festa.",
"description": "Una voce femminile.",
},
"Male 1": {
"path": "speakers/male_1.mp3",
"transcript": "Hello, this is a sample voice recording for demonstration purposes.",
"description": "A male voice with neutral accent.",
},
"Female 2": {
"path": "speakers/female_2.mp3",
"transcript": "This is another sample recording to showcase the voice cloning capabilities.",
"description": "A female voice with clear articulation.",
},
}
banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/llasagna.png"
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 150px; max-width: 300px;"> </div>'
def preview_speaker(display_name):
"""Returns the audio and transcript for preview"""
speaker_name = speaker_display_dict[display_name]
if speaker_name in SPEAKERS:
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"])
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"]
return None, ""
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
progress(0, 'Loading and trimming audio...')
waveform, sample_rate = torchaudio.load(sample_audio_path)
if len(waveform[0])/sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, :sample_rate*15]
# Check if the audio is stereo (i.e., has more than one channel)
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.5, 'Transcribed! Generating speech...')
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
input_text = prompt_text + ' ' + target_text
#TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
progress(1, 'Synthesized!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
with gr.Blocks() as app_tts:
gr.Markdown("# Zero Shot Voice Clone TTS")
with gr.Row():
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
speaker_dropdown = gr.Dropdown(
choices=list(SPEAKERS.keys()),
label="Or select a predefined speaker",
value=None
)
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
def update_audio(speaker):
if speaker in SPEAKERS:
return SPEAKERS[speaker]["path"]
return None
speaker_dropdown.change(
fn=update_audio,
inputs=[speaker_dropdown],
outputs=[ref_audio_input]
)
generate_btn.click(
infer,
inputs=[
ref_audio_input,
gen_text_input,
],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
""")
with gr.Blocks() as app:
gr.HTML(BANNER, elem_id="banner")
gr.Markdown(
"""
# Llasagna 1b TTS
This is a local web UI for Llasagna 1b Zero Shot Voice Cloning and TTS model.
The checkpoints support English and Chinese.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface([app_tts], ["TTS"])
app.launch(ssr_mode=False, share=True)