File size: 4,079 Bytes
4031431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Evaluate ASR models

## 0. Import the necessary libraries

```python
from datasets import load_dataset, Dataset
from transformers import pipeline
import evaluate
import torch
import numpy as np
from tqdm import tqdm
import gradio as gr
from collections import defaultdict
import json
```

Requirements:

```txt
transformers==4.44.0
torch
jiwer
soundfile
numpy
datasets
gradio
librosa
evaluate
```


## 1. Pick a speech dataset (English)from the Hugging Face hub and create a small subset of this dataset (100 rows) by streaming the data

We will use the `librispeech_asr` dataset from the Hugging Face hub. We will use the `clean` split and the `validation` subset.

```python
# Load data
ds = load_dataset("openslr/librispeech_asr", "clean", split="validation", streaming=True)
ds = ds.take(100)
```
## 3. Pick three transformers-compatible speech recognition models

We will evaluate the following models:
- `openai/whisper-tiny.en`
- `facebook/wav2vec2-base-960h`
- `distil-whisper/distil-small.en`

```python
model_name = {
    "whisper-tiny": "openai/whisper-tiny.en",
    "wav2vec2-large-960h": "facebook/wav2vec2-base-960h",
    "distill-whisper-small": "distil-whisper/distil-small.en",
}
```

## 4. Evaluate the models on the dataset

```python
def evaluate_model(ds, pipe, wer_metric):
    wer_scores = []
    wer_results = []
    for idx, sample in enumerate(tqdm(ds, desc="Evaluating", total=len(list(ds)))):
        audio_sample = sample["audio"]
        transcription = pipe(audio_sample["array"])['text']
        # Remove , and . from the transcription
        transcription = transcription.replace(",", "").replace(".", "")
        wer = wer_metric.compute(predictions=[transcription.upper()], references=[sample["text"].upper()])
        wer_scores.append(wer)
        wer_results.append({
            "index": idx,
            "transcription": transcription.upper(),
            "reference": sample["text"].upper(),
            "wer": wer
        })
    return wer_scores, wer_results

# Load WER metric
wer_metric = evaluate.load("wer")

results = {}
model_wer_results = {}
# Evaluate model
for model in model_name:
    pipe = pipeline("automatic-speech-recognition", model=model_name[model])
    wer_scores, wer_results = evaluate_model(ds, pipe, wer_metric)
    results[model] = np.mean(wer_scores)
    model_wer_results[model] = wer_results

for model in results:
    print(f"Model: {model}, WER: {results[model]}")
```

## Whole script

```python
from datasets import load_dataset
from transformers import pipeline
import evaluate
import numpy as np
from tqdm import tqdm

ds = load_dataset("openslr/librispeech_asr", "clean", split="validation", streaming=True)
ds = ds.take(100)

model_name = {
    "whisper-tiny": "openai/whisper-tiny.en",
    "wav2vec2-large-960h": "facebook/wav2vec2-base-960h",
    "distill-whisper-small": "distil-whisper/distil-small.en",
}

def evaluate_model(ds, pipe, wer_metric):
    wer_scores = []
    wer_results = []
    for idx, sample in enumerate(tqdm(ds, desc="Evaluating", total=len(list(ds)))):
        audio_sample = sample["audio"]
        transcription = pipe(audio_sample["array"])['text']
        # Remove , and . from the transcription
        transcription = transcription.replace(",", "").replace(".", "")
        wer = wer_metric.compute(predictions=[transcription.upper()], references=[sample["text"].upper()])
        wer_scores.append(wer)
        wer_results.append({
            "index": idx,
            "transcription": transcription.upper(),
            "reference": sample["text"].upper(),
            "wer": wer
        })
    return wer_scores, wer_results

# Load WER metric
wer_metric = evaluate.load("wer")

results = {}
model_wer_results = {}
# Evaluate model
for model in model_name:
    pipe = pipeline("automatic-speech-recognition", model=model_name[model])
    wer_scores, wer_results = evaluate_model(ds, pipe, wer_metric)
    results[model] = np.mean(wer_scores)
    model_wer_results[model] = wer_results

for model in results:
    print(f"Model: {model}, WER: {results[model]}")
```