Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,24 +8,41 @@ import gradio as gr
|
|
8 |
def calculate_weight_diff(base_weight, chat_weight):
|
9 |
return torch.abs(base_weight - chat_weight).mean().item()
|
10 |
|
11 |
-
def calculate_layer_diffs(base_model, chat_model):
|
12 |
layer_diffs = []
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
return layer_diffs
|
31 |
|
@@ -50,11 +67,11 @@ def visualize_layer_diffs(layer_diffs):
|
|
50 |
plt.tight_layout()
|
51 |
return fig
|
52 |
|
53 |
-
def gradio_interface(base_model_name, chat_model_name):
|
54 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.bfloat16)
|
55 |
chat_model = AutoModelForCausalLM.from_pretrained(chat_model_name, torch_dtype=torch.bfloat16)
|
56 |
|
57 |
-
layer_diffs = calculate_layer_diffs(base_model, chat_model)
|
58 |
fig = visualize_layer_diffs(layer_diffs)
|
59 |
|
60 |
return fig
|
@@ -63,7 +80,8 @@ iface = gr.Interface(
|
|
63 |
fn=gradio_interface,
|
64 |
inputs=[
|
65 |
gr.Textbox(lines=2, placeholder="Enter base model name"),
|
66 |
-
gr.Textbox(lines=2, placeholder="Enter chat model name")
|
|
|
67 |
],
|
68 |
outputs="image",
|
69 |
title="Model Weight Difference Visualizer"
|
|
|
8 |
def calculate_weight_diff(base_weight, chat_weight):
|
9 |
return torch.abs(base_weight - chat_weight).mean().item()
|
10 |
|
11 |
+
def calculate_layer_diffs(base_model, chat_model, load_one_at_a_time=False):
|
12 |
layer_diffs = []
|
13 |
+
layers = zip(base_model.model.layers, chat_model.model.layers)
|
14 |
+
|
15 |
+
if load_one_at_a_time:
|
16 |
+
for base_layer, chat_layer in tqdm(layers, total=len(base_model.model.layers)):
|
17 |
+
layer_diff = {
|
18 |
+
'input_layernorm': calculate_weight_diff(base_layer.input_layernorm.weight, chat_layer.input_layernorm.weight),
|
19 |
+
'mlp_down_proj': calculate_weight_diff(base_layer.mlp.down_proj.weight, chat_layer.mlp.down_proj.weight),
|
20 |
+
'mlp_gate_proj': calculate_weight_diff(base_layer.mlp.gate_proj.weight, chat_layer.mlp.gate_proj.weight),
|
21 |
+
'mlp_up_proj': calculate_weight_diff(base_layer.mlp.up_proj.weight, chat_layer.mlp.up_proj.weight),
|
22 |
+
'post_attention_layernorm': calculate_weight_diff(base_layer.post_attention_layernorm.weight, chat_layer.post_attention_layernorm.weight),
|
23 |
+
'self_attn_q_proj': calculate_weight_diff(base_layer.self_attn.q_proj.weight, chat_layer.self_attn.q_proj.weight),
|
24 |
+
'self_attn_k_proj': calculate_weight_diff(base_layer.self_attn.k_proj.weight, chat_layer.self_attn.k_proj.weight),
|
25 |
+
'self_attn_v_proj': calculate_weight_diff(base_layer.self_attn.v_proj.weight, chat_layer.self_attn.v_proj.weight),
|
26 |
+
'self_attn_o_proj': calculate_weight_diff(base_layer.self_attn.o_proj.weight, chat_layer.self_attn.o_proj.weight)
|
27 |
+
}
|
28 |
+
layer_diffs.append(layer_diff)
|
29 |
|
30 |
+
base_layer, chat_layer = None, None
|
31 |
+
del base_layer, chat_layer
|
32 |
+
else:
|
33 |
+
for base_layer, chat_layer in tqdm(layers, total=len(base_model.model.layers)):
|
34 |
+
layer_diff = {
|
35 |
+
'input_layernorm': calculate_weight_diff(base_layer.input_layernorm.weight, chat_layer.input_layernorm.weight),
|
36 |
+
'mlp_down_proj': calculate_weight_diff(base_layer.mlp.down_proj.weight, chat_layer.mlp.down_proj.weight),
|
37 |
+
'mlp_gate_proj': calculate_weight_diff(base_layer.mlp.gate_proj.weight, chat_layer.mlp.gate_proj.weight),
|
38 |
+
'mlp_up_proj': calculate_weight_diff(base_layer.mlp.up_proj.weight, chat_layer.mlp.up_proj.weight),
|
39 |
+
'post_attention_layernorm': calculate_weight_diff(base_layer.post_attention_layernorm.weight, chat_layer.post_attention_layernorm.weight),
|
40 |
+
'self_attn_q_proj': calculate_weight_diff(base_layer.self_attn.q_proj.weight, chat_layer.self_attn.q_proj.weight),
|
41 |
+
'self_attn_k_proj': calculate_weight_diff(base_layer.self_attn.k_proj.weight, chat_layer.self_attn.k_proj.weight),
|
42 |
+
'self_attn_v_proj': calculate_weight_diff(base_layer.self_attn.v_proj.weight, chat_layer.self_attn.v_proj.weight),
|
43 |
+
'self_attn_o_proj': calculate_weight_diff(base_layer.self_attn.o_proj.weight, chat_layer.self_attn.o_proj.weight)
|
44 |
+
}
|
45 |
+
layer_diffs.append(layer_diff)
|
46 |
|
47 |
return layer_diffs
|
48 |
|
|
|
67 |
plt.tight_layout()
|
68 |
return fig
|
69 |
|
70 |
+
def gradio_interface(base_model_name, chat_model_name, load_one_at_a_time=False):
|
71 |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.bfloat16)
|
72 |
chat_model = AutoModelForCausalLM.from_pretrained(chat_model_name, torch_dtype=torch.bfloat16)
|
73 |
|
74 |
+
layer_diffs = calculate_layer_diffs(base_model, chat_model, load_one_at_a_time=load_one_at_a_time)
|
75 |
fig = visualize_layer_diffs(layer_diffs)
|
76 |
|
77 |
return fig
|
|
|
80 |
fn=gradio_interface,
|
81 |
inputs=[
|
82 |
gr.Textbox(lines=2, placeholder="Enter base model name"),
|
83 |
+
gr.Textbox(lines=2, placeholder="Enter chat model name"),
|
84 |
+
gr.Checkbox(label="Load one layer at a time")
|
85 |
],
|
86 |
outputs="image",
|
87 |
title="Model Weight Difference Visualizer"
|