# Imports import gradio as gr import random import spaces import torch import uuid import os from diffusers import StableDiffusionXLPipeline, ControlNetModel from diffusers.models import AutoencoderKL # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables MAX_SEED = 9007199254740991 DEFAULT_INPUT = "" DEFAULT_NEGATIVE_INPUT = "EasyNegative, deformed, distorted, disfigured, disconnected, disgusting, mutation, mutated, blur, blurry, scribble, abstract, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, porn, nude, nudity, naked, nsfw" DEFAULT_MODEL = "Default" DEFAULT_HEIGHT = 1024 DEFAULT_WIDTH = 1024 css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' # Functions def save_image(img, seed): name = f"{seed}-{uuid.uuid4()}.png" img.save(name) return name def get_seed(seed): seed = seed.strip() if seed.isdigit(): return int(seed) else: return random.randint(0, MAX_SEED) @spaces.GPU(duration=30) def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None): repo = None filter_input = filter_input or "" negative_input = negative_input or DEFAULT_NEGATIVE_INPUT seed = get_seed(seed) print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed) if model == "Anime": vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16) repo = StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) steps = (not steps or steps < 0 and 16) or steps guidance = (not guidance or guidance < 0 and 7) or guidance else: vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16) repo = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) repo.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base") repo.set_adapters(["base"], adapter_weights=[0.7]) steps = (not steps or steps < 0 and 16) or steps guidance = (not guidance or guidance < 0 and 3) or guidance repo.to(DEVICE) parameters = { "prompt": input, "negative_prompt": filter_input + negative_input, "height": height, "width": width, "num_inference_steps": steps, "guidance_scale": guidance, "num_images_per_prompt": number, "controlnet_conditioning_scale": 1, "cross_attention_kwargs": {"scale": 1}, "generator": torch.Generator().manual_seed(seed), "use_resolution_binning": True, "output_type":"pil", } images = repo(**parameters).images image_paths = [save_image(img, seed) for img in images] print(image_paths) return image_paths def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.") with gr.Column(): input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") filter_input = gr.Textbox(lines=1, value="", label="Input Filter") negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") model = gr.Dropdown(label="Models", choices=["Default", "Anime"], value="Default") height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps") guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance") number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): images = gr.Gallery(columns=1, label="Image") submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)