# Imports import gradio as gr import random import spaces import torch import numpy import uuid import json import os from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler from PIL import Image # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables MAX_SEED = 9007199254740991 DEFAULT_INPUT = "" DEFAULT_NEGATIVE_INPUT = "(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW" DEFAULT_HEIGHT = 1024 DEFAULT_WIDTH = 1024 REPO = "sd-community/sdxl-flash" REPO_WEIGHT = "ehristoforu/dalle-3-xl-v2" WEIGHT = "dalle-3-xl-lora-v2.safetensors" ADAPTER = "dalle" model = StableDiffusionXLPipeline.from_pretrained(REPO, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) model.scheduler = EulerAncestralDiscreteScheduler.from_config(model.scheduler.config) model.load_lora_weights(REPO_WEIGHT, weight_name=WEIGHT, adapter_name=ADAPTER) model.set_adapters(ADAPTER, adapter_weights=[0.7]) model.to(DEVICE) css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' # Functions def save_image(img, seed): name = f"{seed}-{uuid.uuid4()}.png" img.save(name) return name def get_seed(seed): seed = seed.strip() if seed.isdigit(): return int(seed) else: return random.randint(0, MAX_SEED) @spaces.GPU(duration=30) def generate(input=DEFAULT_INPUT, negative_input=DEFAULT_NEGATIVE_INPUT, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None): seed = get_seed(seed) print(input, negative_input, height, width, steps, guidance, number, seed) model.to(DEVICE) parameters = { "prompt": input, "negative_prompt": negative_input, "height": height, "width": width, "num_inference_steps": steps, "guidance_scale": guidance, "num_images_per_prompt": number, "cross_attention_kwargs": {"scale": 0.01}, "generator": torch.Generator().manual_seed(seed), "use_resolution_binning": True, "output_type":"pil", } images = model(**parameters).images image_paths = [save_image(img, seed) for img in images] print(image_paths) return image_paths def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") steps = gr.Slider(minimum=0, maximum=100, step=1, value=8, label="Steps") guidance = gr.Slider(minimum=0, maximum=100, step=0.001, value=3, label = "Guidance") number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): images = gr.Gallery(columns=1, label="Image") submit.click(generate, inputs=[input, negative_input, height, width, steps, guidance, number, seed], outputs=[images], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)