# Imports import gradio as gr import random import spaces import torch import uuid import os from diffusers import StableDiffusionXLPipeline, ControlNetModel from diffusers.models import AutoencoderKL # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables MAX_SEED = 9007199254740991 DEFAULT_INPUT = "" DEFAULT_NEGATIVE_INPUT = "EasyNegative, (bad), [abstract], deformed, distorted, disfigured, disconnected, disgusting, displeasing, mutation, mutated, blur, blurry, fewer, extra, missing, unfinished, scribble, lowres, low quality, jpeg artifacts, chromatic aberration, extra digits, artistic error, text, error, username, scan, signature, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, explicit, porn, nude, nudity, naked, nsfw" DEFAULT_MODEL = "Default" DEFAULT_HEIGHT = 1024 DEFAULT_WIDTH = 1024 css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16) repo_default = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base") repo_default.set_adapters(["base"], adapter_weights=[0.7]) repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base") repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2") repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1]) repo_large = StableDiffusionXLPipeline.from_pretrained("Corcelio/mobius", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) repo_customs = { "Default": repo_default, "Realistic": StableDiffusionXLPipeline.from_pretrained("stablediffusionapi/NightVision_XL", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=False, add_watermarker=False), "Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), "Pixel": repo_pixel, "Large": repo_large, } # Functions def save_image(img, seed): name = f"{seed}-{uuid.uuid4()}.png" img.save(name) return name def get_seed(seed): seed = seed.strip() if seed.isdigit(): return int(seed) else: return random.randint(0, MAX_SEED) @spaces.GPU(duration=60) def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None): repo = repo_customs[model or "Default"] filter_input = filter_input or "" negative_input = negative_input or DEFAULT_NEGATIVE_INPUT steps_set = steps guidance_set = guidance seed = get_seed(seed) print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed) if model == "Realistic": steps_set = 35 guidance_set = 7 elif model == "Anime": steps_set = 35 guidance_set = 7 elif model == "Pixel": steps_set = 15 guidance_set = 1.5 elif model == "Large": steps_set = 20 guidance_set = 7 else: steps_set = 20 guidance_set = 3 if not steps or steps < 0: steps = steps_set if not guidance or guidance < 0: guidance = guidance_set print(steps, guidance) repo.to(DEVICE) parameters = { "prompt": input, "negative_prompt": filter_input + negative_input, "height": height, "width": width, "num_inference_steps": steps, "guidance_scale": guidance, "num_images_per_prompt": number, "controlnet_conditioning_scale": 1, "cross_attention_kwargs": {"scale": 1}, "generator": torch.Generator().manual_seed(seed), "use_resolution_binning": True, "output_type":"pil", } images = repo(**parameters).images image_paths = [save_image(img, seed) for img in images] print(image_paths) return image_paths def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.") with gr.Column(): input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") filter_input = gr.Textbox(lines=1, value="", label="Input Filter") negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") model = gr.Dropdown(label="Models", choices=repo_customs.keys(), value="Default") height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps") guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance") number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): images = gr.Gallery(columns=1, label="Image") submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)