Update app.py
Browse files
app.py
CHANGED
@@ -25,9 +25,10 @@ DEFAULT_WIDTH = 1024
|
|
25 |
|
26 |
REPO = "sd-community/sdxl-flash"
|
27 |
|
|
|
28 |
controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float32)
|
29 |
|
30 |
-
model = StableDiffusionXLPipeline.from_pretrained(REPO, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
31 |
model.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
32 |
model.set_adapters(["base"], adapter_weights=[0.7])
|
33 |
model.to(DEVICE)
|
@@ -69,7 +70,7 @@ def generate(input=DEFAULT_INPUT, negative_input=DEFAULT_NEGATIVE_INPUT, height=
|
|
69 |
"num_inference_steps": steps,
|
70 |
"guidance_scale": guidance,
|
71 |
"num_images_per_prompt": number,
|
72 |
-
"controlnet_conditioning_scale":
|
73 |
"cross_attention_kwargs": {"scale": 1},
|
74 |
"generator": torch.Generator().manual_seed(seed),
|
75 |
"use_resolution_binning": True,
|
|
|
25 |
|
26 |
REPO = "sd-community/sdxl-flash"
|
27 |
|
28 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae")
|
29 |
controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float32)
|
30 |
|
31 |
+
model = StableDiffusionXLPipeline.from_pretrained(REPO, vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
|
32 |
model.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
|
33 |
model.set_adapters(["base"], adapter_weights=[0.7])
|
34 |
model.to(DEVICE)
|
|
|
70 |
"num_inference_steps": steps,
|
71 |
"guidance_scale": guidance,
|
72 |
"num_images_per_prompt": number,
|
73 |
+
"controlnet_conditioning_scale": 1,
|
74 |
"cross_attention_kwargs": {"scale": 1},
|
75 |
"generator": torch.Generator().manual_seed(seed),
|
76 |
"use_resolution_binning": True,
|