Image / app.py
Staticaliza's picture
Update app.py
da893d8 verified
raw
history blame
5.85 kB
# Imports
import gradio as gr
import threading
import requests
import random
import spaces
import torch
import uuid
import json
import os
from diffusers import DiffusionPipeline
from transformers import pipeline
from PIL import Image
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
# Variables
HF_TOKEN = os.environ.get("HF_TOKEN")
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" }
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
repo_nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
repo_default = DiffusionPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="default_base")
repo_default.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="pixel_base")
repo_default.load_lora_weights("nerijs/pixel-art-xl", adapter_name="pixel_base_2")
repo_pro = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_safetensors=True, add_watermarker=False)
repo_customs = {
"Default": repo_default,
"Realistic": DiffusionPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Anime": DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False),
"Pixel": repo_default,
"Pro": repo_pro,
}
# Functions
def save_image(img, seed):
name = f"{seed}-{uuid.uuid4()}.png"
img.save(name)
return name
def get_seed(seed):
seed = seed.strip()
if seed.isdigit():
return int(seed)
else:
return random.randint(0, MAX_SEED)
@spaces.GPU(duration=120)
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):
repo = repo_customs[model or "Default"]
filter_input = filter_input or ""
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT
steps_set = steps
guidance_set = guidance
seed = get_seed(seed)
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed)
if model == "Realistic":
steps_set = 25
guidance_set = 7
elif model == "Anime":
steps_set = 25
guidance_set = 7
elif model == "Pixel":
steps_set = 10
guidance_set = 1.5
repo.set_adapters(["pixel_base", "pixel_base_2"], adapter_weights=[1, 1])
elif model == "Pro":
steps_set = 25
guidance_set = 3.5
else:
steps_set = 25
guidance_set = 7
repo.set_adapters(["default_base"], adapter_weights=[0.7])
if not steps:
steps = steps_set
if not guidance:
guidance = guidance_set
print(steps, guidance)
repo.to(DEVICE)
parameters = {
"prompt": input,
"height": height,
"width": width,
"num_inference_steps": steps,
"guidance_scale": guidance,
"num_images_per_prompt": number,
"generator": torch.Generator().manual_seed(seed),
"output_type":"pil",
}
if model != "Pro":
parameters["negative_prompt"] = filter_input + negative_input
images = repo(**parameters).images
image_paths = [save_image(img, seed) for img in images]
print(image_paths)
nsfw_prediction = repo_nsfw_classifier(image_paths[0])
print(nsfw_prediction)
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Generate high quality images in all styles.")
with gr.Column():
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
filter_input = gr.Textbox(lines=1, value="", label="Input Filter")
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model")
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps")
guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance")
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Gallery(columns=1, label="Image")
output_2 = gr.Label()
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[output, output_2], queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True)