|
|
|
import gradio as gr |
|
import random |
|
import spaces |
|
import torch |
|
import uuid |
|
import os |
|
from transformers import pipeline |
|
|
|
from diffusers import StableDiffusionXLPipeline, ControlNetModel |
|
from diffusers.models import AutoencoderKL |
|
from PIL import Image |
|
|
|
|
|
DEVICE = "auto" |
|
if DEVICE == "auto": |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"[SYSTEM] | Using {DEVICE} type compute device.") |
|
|
|
|
|
MAX_SEED = 9007199254740991 |
|
DEFAULT_INPUT = "" |
|
DEFAULT_NEGATIVE_INPUT = "EasyNegative, (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (exposed, explicit, porn, nude, nudity, naked, nsfw:1.25)" |
|
DEFAULT_MODEL = "Default" |
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_WIDTH = 1024 |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
repo_nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") |
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16) |
|
|
|
repo_default = StableDiffusionXLPipeline.from_pretrained("fluently/Fluently-XL-Final", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) |
|
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base") |
|
repo_default.set_adapters("base") |
|
|
|
|
|
repo_pixel = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) |
|
repo_pixel.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="base") |
|
repo_pixel.load_lora_weights("nerijs/pixel-art-xl", adapter_name="base2") |
|
repo_pixel.set_adapters(["base", "base2"], adapter_weights=[1, 1]) |
|
|
|
repo_customs = { |
|
"Default": repo_default, |
|
"Realistic": StableDiffusionXLPipeline.from_pretrained("SG161222/RealVisXL_V4.0", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), |
|
"Anime": StableDiffusionXLPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), |
|
"Pixel": repo_pixel, |
|
} |
|
|
|
|
|
def save_image(img, seed): |
|
name = f"{seed}-{uuid.uuid4()}.png" |
|
img.save(name) |
|
return name |
|
|
|
def get_seed(seed): |
|
seed = seed.strip() |
|
if seed.isdigit(): |
|
return int(seed) |
|
else: |
|
return random.randint(0, MAX_SEED) |
|
|
|
@spaces.GPU(duration=60) |
|
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None): |
|
|
|
repo = repo_customs[model or "Default"] |
|
filter_input = filter_input or "" |
|
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT |
|
steps_set = steps |
|
guidance_set = guidance |
|
seed = get_seed(seed) |
|
|
|
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed) |
|
|
|
if model == "Realistic": |
|
steps_set = 35 |
|
guidance_set = 6 |
|
elif model == "Anime": |
|
steps_set = 35 |
|
guidance_set = 6 |
|
elif model == "Pixel": |
|
steps_set = 15 |
|
guidance_set = 1.5 |
|
else: |
|
steps_set = 25 |
|
guidance_set = 6 |
|
|
|
if not steps or steps < 0: |
|
steps = steps_set |
|
if not guidance or guidance < 0: |
|
guidance = guidance_set |
|
|
|
print(steps, guidance) |
|
|
|
repo.to(DEVICE) |
|
|
|
parameters = { |
|
"prompt": input, |
|
"negative_prompt": filter_input + negative_input, |
|
"height": height, |
|
"width": width, |
|
"num_inference_steps": steps, |
|
"guidance_scale": guidance, |
|
"num_images_per_prompt": number, |
|
"controlnet_conditioning_scale": 1, |
|
"cross_attention_kwargs": {"scale": 1}, |
|
"generator": torch.Generator().manual_seed(seed), |
|
"use_resolution_binning": True, |
|
"output_type":"pil", |
|
} |
|
|
|
images = repo(**parameters).images |
|
image_paths = [save_image(img, seed) for img in images] |
|
|
|
print(image_paths) |
|
|
|
nsfw_prediction = repo_nsfw_classifier(Image.open(image_paths[0])) |
|
|
|
print(nsfw_prediction) |
|
|
|
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction} |
|
|
|
def cloud(): |
|
print("[CLOUD] | Space maintained.") |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as main: |
|
with gr.Column(): |
|
gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.") |
|
|
|
with gr.Column(): |
|
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") |
|
filter_input = gr.Textbox(lines=1, value="", label="Input Filter") |
|
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") |
|
model = gr.Dropdown(label="Models", choices=repo_customs.keys(), value="Default") |
|
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") |
|
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") |
|
steps = gr.Slider(minimum=-1, maximum=100, step=1, value=-1, label="Steps") |
|
guidance = gr.Slider(minimum=-1, maximum=100, step=0.001, value=-1, label = "Guidance") |
|
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") |
|
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") |
|
submit = gr.Button("▶") |
|
maintain = gr.Button("☁️") |
|
|
|
with gr.Column(): |
|
images = gr.Gallery(columns=1, label="Image") |
|
nsfw_classifier = gr.Label() |
|
|
|
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images, nsfw_classifier], queue=False) |
|
maintain.click(cloud, inputs=[], outputs=[], queue=False) |
|
|
|
main.launch(show_api=True) |