|
|
|
import gradio as gr |
|
import random |
|
import spaces |
|
import torch |
|
import numpy |
|
import uuid |
|
import json |
|
import os |
|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
from PIL import Image |
|
|
|
|
|
DEVICE = "auto" |
|
if DEVICE == "auto": |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"[SYSTEM] | Using {DEVICE} type compute device.") |
|
|
|
|
|
MAX_SEED = 9007199254740991 |
|
DEFAULT_INPUT = "" |
|
DEFAULT_NEGATIVE_INPUT = "" |
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_WIDTH = 1024 |
|
|
|
REPO = "sd-community/sdxl-flash" |
|
REPO_WEIGHT = "ehristoforu/dalle-3-xl-v2" |
|
WEIGHT = "dalle-3-xl-lora-v2.safetensors" |
|
ADAPTER = "dalle" |
|
|
|
model = StableDiffusionXLPipeline.from_pretrained(REPO, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) |
|
model.scheduler = EulerAncestralDiscreteScheduler.from_config(model.scheduler.config) |
|
model.load_lora_weights(REPO_WEIGHT, weight_name=WEIGHT, adapter_name=ADAPTER) |
|
model.set_adapters(ADAPTER, adapter_weights=[0.7]) |
|
model.to(DEVICE) |
|
|
|
|
|
def get_seed(seed): |
|
seed = seed.strip() |
|
if seed.isdigit(): |
|
return int(seed) |
|
else: |
|
return random.randint(0, MAX_SEED) |
|
|
|
@spaces.GPU(duration=30) |
|
def generate(input=DEFAULT_INPUT, negative_input=DEFAULT_NEGATIVE_INPUT, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, seed=None, progress=gr.Progress(track_tqdm=True)): |
|
|
|
print(input, negative_input, height, width, steps, guidance, seed) |
|
model.to(DEVICE) |
|
|
|
parameters = { |
|
"prompt": input, |
|
"negative_prompt": negative_input, |
|
"height": height, |
|
"width": width, |
|
"num_inference_steps": steps, |
|
"guidance_scale": guidance, |
|
"generator": torch.Generator().manual_seed(get_seed(seed)), |
|
"use_resolution_binning": True, |
|
"output_type":"pil", |
|
} |
|
|
|
image = model(**parameters).images[0] |
|
return image |
|
|
|
|
|
with gr.Blocks() as main: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") |
|
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") |
|
height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") |
|
width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") |
|
steps = gr.Slider(minimum=0, maximum=100, step=1, value=8, label="Steps") |
|
guidance = gr.Slider(minimum=0, maximum=100, step=0.001, value=3, label = "Guidance") |
|
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") |
|
submit = gr.Button("▶") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Image") |
|
|
|
submit.click(generate, inputs=[input, negative_input, height, width, steps, guidance, seed], outputs=[image]) |
|
|
|
main.launch(show_api=True) |