import streamlit as st import os from openai import AzureOpenAI from functions import call_function st.title("Support Chat UI") # when will my order be delivered?, colin.flueck@gmail.com W123123 functions = [ { "name": "order_tracking_status", "description": "Retrieves the status of an order based on **both** the email address and order number.", "parameters": { "type": "object", "properties": { "email_address": { "type": "string", "description": "The email address associated with the order" }, "order_number": { "type": "integer", "description": "The order number." }, }, "required": ["email_address", "order_number"] } }, { "name": "refer_to_human_agent", "description": "Use this to refer the customer's question to a human agent. You should only call this " "function if you don't know how to answer the inquiry?.", "parameters": { "type": "object", "properties": { "conversation_summary": { "type": "string", "description": "A short summary of the current conversation so the agent can quickly get up to " "speed. Make sure you include all relevant details. " }, }, "required": ["conversation_summary"] } } ] client = AzureOpenAI( api_key=os.environ['OPENAI_API_KEY'], api_version="2023-07-01-preview", azure_endpoint=os.environ['AZURE_ENDPOINT'], ) if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-35-turbo" if "messages" not in st.session_state: st.session_state.messages = [{"role": "system", "content": "You are a helpful customer support agent for Lowes." "Be as helpful as possible and call " "functions when necessary."},] for message in st.session_state.messages: if message["role"] == "assistant" or message["role"] == "user": with st.chat_message(message["role"]): st.markdown(message["content"]) if prompt := st.chat_input("How can we help you today?"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant", avatar="🏠"): # avatar=st.image('Home-Depot-Logo.png', width=50)): message_placeholder = st.empty() full_message = "" func_call = { "name": None, "arguments": "", } called_function = True while called_function: called_function = False for response in client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"], "name": m["name"]} if "name" in m else {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], functions=functions, function_call="auto", stream=True, ): if len(response.choices) > 0: delta = response.choices[0].delta full_message += (delta.content or "") if delta.function_call is not None: if delta.function_call.name is not None: func_call["name"] = delta.function_call.name if delta.function_call.arguments is not None: func_call["arguments"] += delta.function_call.arguments message_placeholder.markdown(full_message + "▌") if func_call["name"] is not None: print(f"Function generation requested, calling function") function_response = call_function(st.session_state.messages, func_call) print("function response") print(function_response) st.session_state.messages.append(function_response) called_function = True func_call = { "name": None, "arguments": "", } message_placeholder.markdown(full_message) st.session_state.messages.append({"role": "assistant", "content": full_message})