|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import logging |
|
from functools import partial |
|
import networkx as nx |
|
import trio |
|
|
|
from api import settings |
|
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt |
|
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt |
|
from graphrag.general.community_reports_extractor import CommunityReportsExtractor |
|
from graphrag.entity_resolution import EntityResolution |
|
from graphrag.general.extractor import Extractor |
|
from graphrag.utils import ( |
|
graph_merge, |
|
set_entity, |
|
get_relation, |
|
set_relation, |
|
get_entity, |
|
get_graph, |
|
set_graph, |
|
chunk_id, |
|
update_nodes_pagerank_nhop_neighbour, |
|
does_graph_contains, |
|
get_graph_doc_ids, |
|
) |
|
from rag.nlp import rag_tokenizer, search |
|
from rag.utils.redis_conn import REDIS_CONN |
|
|
|
|
|
def graphrag_task_set(tenant_id, kb_id, doc_id) -> bool: |
|
key = f"graphrag:{tenant_id}:{kb_id}" |
|
ok = REDIS_CONN.set(key, doc_id, exp=3600 * 24) |
|
if not ok: |
|
raise Exception(f"Faild to set the {key} to {doc_id}") |
|
|
|
|
|
def graphrag_task_get(tenant_id, kb_id) -> str | None: |
|
key = f"graphrag:{tenant_id}:{kb_id}" |
|
doc_id = REDIS_CONN.get(key) |
|
return doc_id |
|
|
|
|
|
async def run_graphrag( |
|
row: dict, |
|
language, |
|
with_resolution: bool, |
|
with_community: bool, |
|
chat_model, |
|
embedding_model, |
|
callback, |
|
): |
|
start = trio.current_time() |
|
tenant_id, kb_id, doc_id = row["tenant_id"], str(row["kb_id"]), row["doc_id"] |
|
chunks = [] |
|
for d in settings.retrievaler.chunk_list( |
|
doc_id, tenant_id, [kb_id], fields=["content_with_weight", "doc_id"] |
|
): |
|
chunks.append(d["content_with_weight"]) |
|
|
|
graph, doc_ids = await update_graph( |
|
LightKGExt |
|
if row["parser_config"]["graphrag"]["method"] != "general" |
|
else GeneralKGExt, |
|
tenant_id, |
|
kb_id, |
|
doc_id, |
|
chunks, |
|
language, |
|
row["parser_config"]["graphrag"]["entity_types"], |
|
chat_model, |
|
embedding_model, |
|
callback, |
|
) |
|
if not graph: |
|
return |
|
if with_resolution or with_community: |
|
graphrag_task_set(tenant_id, kb_id, doc_id) |
|
if with_resolution: |
|
await resolve_entities( |
|
graph, |
|
doc_ids, |
|
tenant_id, |
|
kb_id, |
|
doc_id, |
|
chat_model, |
|
embedding_model, |
|
callback, |
|
) |
|
if with_community: |
|
await extract_community( |
|
graph, |
|
doc_ids, |
|
tenant_id, |
|
kb_id, |
|
doc_id, |
|
chat_model, |
|
embedding_model, |
|
callback, |
|
) |
|
now = trio.current_time() |
|
callback(msg=f"GraphRAG for doc {doc_id} done in {now - start:.2f} seconds.") |
|
return |
|
|
|
|
|
async def update_graph( |
|
extractor: Extractor, |
|
tenant_id: str, |
|
kb_id: str, |
|
doc_id: str, |
|
chunks: list[str], |
|
language, |
|
entity_types, |
|
llm_bdl, |
|
embed_bdl, |
|
callback, |
|
): |
|
contains = await does_graph_contains(tenant_id, kb_id, doc_id) |
|
if contains: |
|
callback(msg=f"Graph already contains {doc_id}, cancel myself") |
|
return None, None |
|
start = trio.current_time() |
|
ext = extractor( |
|
llm_bdl, |
|
language=language, |
|
entity_types=entity_types, |
|
get_entity=partial(get_entity, tenant_id, kb_id), |
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl), |
|
get_relation=partial(get_relation, tenant_id, kb_id), |
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl), |
|
) |
|
ents, rels = await ext(doc_id, chunks, callback) |
|
subgraph = nx.Graph() |
|
for en in ents: |
|
subgraph.add_node(en["entity_name"], entity_type=en["entity_type"]) |
|
|
|
for rel in rels: |
|
subgraph.add_edge( |
|
rel["src_id"], |
|
rel["tgt_id"], |
|
weight=rel["weight"], |
|
|
|
) |
|
|
|
chunk = { |
|
"content_with_weight": json.dumps( |
|
nx.node_link_data(subgraph, edges="edges"), ensure_ascii=False, indent=2 |
|
), |
|
"knowledge_graph_kwd": "subgraph", |
|
"kb_id": kb_id, |
|
"source_id": [doc_id], |
|
"available_int": 0, |
|
"removed_kwd": "N", |
|
} |
|
cid = chunk_id(chunk) |
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.insert( |
|
[{"id": cid, **chunk}], search.index_name(tenant_id), kb_id |
|
) |
|
) |
|
now = trio.current_time() |
|
callback(msg=f"generated subgraph for doc {doc_id} in {now - start:.2f} seconds.") |
|
start = now |
|
|
|
while True: |
|
new_graph = subgraph |
|
now_docids = set([doc_id]) |
|
old_graph, old_doc_ids = await get_graph(tenant_id, kb_id) |
|
if old_graph is not None: |
|
logging.info("Merge with an exiting graph...................") |
|
new_graph = graph_merge(old_graph, subgraph) |
|
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, new_graph, 2) |
|
if old_doc_ids: |
|
for old_doc_id in old_doc_ids: |
|
now_docids.add(old_doc_id) |
|
old_doc_ids2 = await get_graph_doc_ids(tenant_id, kb_id) |
|
delta_doc_ids = set(old_doc_ids2) - set(old_doc_ids) |
|
if delta_doc_ids: |
|
callback( |
|
msg="The global graph has changed during merging, try again" |
|
) |
|
await trio.sleep(1) |
|
continue |
|
break |
|
await set_graph(tenant_id, kb_id, new_graph, list(now_docids)) |
|
now = trio.current_time() |
|
callback( |
|
msg=f"merging subgraph for doc {doc_id} into the global graph done in {now - start:.2f} seconds." |
|
) |
|
return new_graph, now_docids |
|
|
|
|
|
async def resolve_entities( |
|
graph, |
|
doc_ids, |
|
tenant_id: str, |
|
kb_id: str, |
|
doc_id: str, |
|
llm_bdl, |
|
embed_bdl, |
|
callback, |
|
): |
|
working_doc_id = graphrag_task_get(tenant_id, kb_id) |
|
if doc_id != working_doc_id: |
|
callback( |
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself" |
|
) |
|
return |
|
start = trio.current_time() |
|
er = EntityResolution( |
|
llm_bdl, |
|
get_entity=partial(get_entity, tenant_id, kb_id), |
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl), |
|
get_relation=partial(get_relation, tenant_id, kb_id), |
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl), |
|
) |
|
reso = await er(graph, callback=callback) |
|
graph = reso.graph |
|
callback(msg=f"Graph resolution removed {len(reso.removed_entities)} nodes.") |
|
await update_nodes_pagerank_nhop_neighbour(tenant_id, kb_id, graph, 2) |
|
callback(msg="Graph resolution updated pagerank.") |
|
|
|
working_doc_id = graphrag_task_get(tenant_id, kb_id) |
|
if doc_id != working_doc_id: |
|
callback( |
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself" |
|
) |
|
return |
|
await set_graph(tenant_id, kb_id, graph, doc_ids) |
|
|
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.delete( |
|
{ |
|
"knowledge_graph_kwd": "relation", |
|
"kb_id": kb_id, |
|
"from_entity_kwd": reso.removed_entities, |
|
}, |
|
search.index_name(tenant_id), |
|
kb_id, |
|
) |
|
) |
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.delete( |
|
{ |
|
"knowledge_graph_kwd": "relation", |
|
"kb_id": kb_id, |
|
"to_entity_kwd": reso.removed_entities, |
|
}, |
|
search.index_name(tenant_id), |
|
kb_id, |
|
) |
|
) |
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.delete( |
|
{ |
|
"knowledge_graph_kwd": "entity", |
|
"kb_id": kb_id, |
|
"entity_kwd": reso.removed_entities, |
|
}, |
|
search.index_name(tenant_id), |
|
kb_id, |
|
) |
|
) |
|
now = trio.current_time() |
|
callback(msg=f"Graph resolution done in {now - start:.2f}s.") |
|
|
|
|
|
async def extract_community( |
|
graph, |
|
doc_ids, |
|
tenant_id: str, |
|
kb_id: str, |
|
doc_id: str, |
|
llm_bdl, |
|
embed_bdl, |
|
callback, |
|
): |
|
working_doc_id = graphrag_task_get(tenant_id, kb_id) |
|
if doc_id != working_doc_id: |
|
callback( |
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself" |
|
) |
|
return |
|
start = trio.current_time() |
|
ext = CommunityReportsExtractor( |
|
llm_bdl, |
|
get_entity=partial(get_entity, tenant_id, kb_id), |
|
set_entity=partial(set_entity, tenant_id, kb_id, embed_bdl), |
|
get_relation=partial(get_relation, tenant_id, kb_id), |
|
set_relation=partial(set_relation, tenant_id, kb_id, embed_bdl), |
|
) |
|
cr = await ext(graph, callback=callback) |
|
community_structure = cr.structured_output |
|
community_reports = cr.output |
|
working_doc_id = graphrag_task_get(tenant_id, kb_id) |
|
if doc_id != working_doc_id: |
|
callback( |
|
msg=f"Another graphrag task of doc_id {working_doc_id} is working on this kb, cancel myself" |
|
) |
|
return |
|
await set_graph(tenant_id, kb_id, graph, doc_ids) |
|
|
|
now = trio.current_time() |
|
callback( |
|
msg=f"Graph extracted {len(cr.structured_output)} communities in {now - start:.2f}s." |
|
) |
|
start = now |
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.delete( |
|
{"knowledge_graph_kwd": "community_report", "kb_id": kb_id}, |
|
search.index_name(tenant_id), |
|
kb_id, |
|
) |
|
) |
|
for stru, rep in zip(community_structure, community_reports): |
|
obj = { |
|
"report": rep, |
|
"evidences": "\n".join([f["explanation"] for f in stru["findings"]]), |
|
} |
|
chunk = { |
|
"docnm_kwd": stru["title"], |
|
"title_tks": rag_tokenizer.tokenize(stru["title"]), |
|
"content_with_weight": json.dumps(obj, ensure_ascii=False), |
|
"content_ltks": rag_tokenizer.tokenize( |
|
obj["report"] + " " + obj["evidences"] |
|
), |
|
"knowledge_graph_kwd": "community_report", |
|
"weight_flt": stru["weight"], |
|
"entities_kwd": stru["entities"], |
|
"important_kwd": stru["entities"], |
|
"kb_id": kb_id, |
|
"source_id": doc_ids, |
|
"available_int": 0, |
|
} |
|
chunk["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize( |
|
chunk["content_ltks"] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
await trio.to_thread.run_sync( |
|
lambda: settings.docStoreConn.insert( |
|
[{"id": chunk_id(chunk), **chunk}], search.index_name(tenant_id) |
|
) |
|
) |
|
|
|
now = trio.current_time() |
|
callback( |
|
msg=f"Graph indexed {len(cr.structured_output)} communities in {now - start:.2f}s." |
|
) |
|
return community_structure, community_reports |
|
|