File size: 6,470 Bytes
b9fe2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import collections
import re
from typing import Any
from dataclasses import dataclass
import trio

from graphrag.general.extractor import Extractor
from graphrag.general.mind_map_prompt import MIND_MAP_EXTRACTION_PROMPT
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, chat_limiter
from rag.llm.chat_model import Base as CompletionLLM
import markdown_to_json
from functools import reduce
from rag.utils import num_tokens_from_string


@dataclass
class MindMapResult:
    """Unipartite Mind Graph result class definition."""
    output: dict


class MindMapExtractor(Extractor):
    _input_text_key: str
    _mind_map_prompt: str
    _on_error: ErrorHandlerFn

    def __init__(
            self,
            llm_invoker: CompletionLLM,
            prompt: str | None = None,
            input_text_key: str | None = None,
            on_error: ErrorHandlerFn | None = None,
    ):
        """Init method definition."""
        # TODO: streamline construction
        self._llm = llm_invoker
        self._input_text_key = input_text_key or "input_text"
        self._mind_map_prompt = prompt or MIND_MAP_EXTRACTION_PROMPT
        self._on_error = on_error or (lambda _e, _s, _d: None)

    def _key(self, k):
        return re.sub(r"\*+", "", k)

    def _be_children(self, obj: dict, keyset: set):
        if isinstance(obj, str):
            obj = [obj]
        if isinstance(obj, list):
            keyset.update(obj)
            obj = [re.sub(r"\*+", "", i) for i in obj]
            return [{"id": i, "children": []} for i in obj if i]
        arr = []
        for k, v in obj.items():
            k = self._key(k)
            if k and k not in keyset:
                keyset.add(k)
                arr.append(
                    {
                        "id": k,
                        "children": self._be_children(v, keyset)
                    }
                )
        return arr

    async def __call__(
            self, sections: list[str], prompt_variables: dict[str, Any] | None = None
    ) -> MindMapResult:
        """Call method definition."""
        if prompt_variables is None:
            prompt_variables = {}

        res = []
        token_count = max(self._llm.max_length * 0.8, self._llm.max_length - 512)
        texts = []
        cnt = 0
        async with trio.open_nursery() as nursery:
            for i in range(len(sections)):
                section_cnt = num_tokens_from_string(sections[i])
                if cnt + section_cnt >= token_count and texts:
                    nursery.start_soon(lambda: self._process_document("".join(texts), prompt_variables, res))
                    texts = []
                    cnt = 0
                texts.append(sections[i])
                cnt += section_cnt
            if texts:
                nursery.start_soon(lambda: self._process_document("".join(texts), prompt_variables, res))
        if not res:
            return MindMapResult(output={"id": "root", "children": []})
        merge_json = reduce(self._merge, res)
        if len(merge_json) > 1:
            keys = [re.sub(r"\*+", "", k) for k, v in merge_json.items() if isinstance(v, dict)]
            keyset = set(i for i in keys if i)
            merge_json = {
                "id": "root",
                "children": [
                    {
                        "id": self._key(k),
                        "children": self._be_children(v, keyset)
                    }
                    for k, v in merge_json.items() if isinstance(v, dict) and self._key(k)
                ]
            }
        else:
            k = self._key(list(merge_json.keys())[0])
            merge_json = {"id": k, "children": self._be_children(list(merge_json.items())[0][1], {k})}

        return MindMapResult(output=merge_json)

    def _merge(self, d1, d2):
        for k in d1:
            if k in d2:
                if isinstance(d1[k], dict) and isinstance(d2[k], dict):
                    self._merge(d1[k], d2[k])
                elif isinstance(d1[k], list) and isinstance(d2[k], list):
                    d2[k].extend(d1[k])
                else:
                    d2[k] = d1[k]
            else:
                d2[k] = d1[k]

        return d2

    def _list_to_kv(self, data):
        for key, value in data.items():
            if isinstance(value, dict):
                self._list_to_kv(value)
            elif isinstance(value, list):
                new_value = {}
                for i in range(len(value)):
                    if isinstance(value[i], list) and i > 0:
                        new_value[value[i - 1]] = value[i][0]
                data[key] = new_value
            else:
                continue
        return data

    def _todict(self, layer: collections.OrderedDict):
        to_ret = layer
        if isinstance(layer, collections.OrderedDict):
            to_ret = dict(layer)

        try:
            for key, value in to_ret.items():
                to_ret[key] = self._todict(value)
        except AttributeError:
            pass

        return self._list_to_kv(to_ret)

    async def _process_document(
            self, text: str, prompt_variables: dict[str, str], out_res
    ) -> str:
        variables = {
            **prompt_variables,
            self._input_text_key: text,
        }
        text = perform_variable_replacements(self._mind_map_prompt, variables=variables)
        gen_conf = {"temperature": 0.5}
        async with chat_limiter:
            response = await trio.to_thread.run_sync(lambda: self._chat(text, [{"role": "user", "content": "Output:"}], gen_conf))
        response = re.sub(r"```[^\n]*", "", response)
        logging.debug(response)
        logging.debug(self._todict(markdown_to_json.dictify(response)))
        out_res.append(self._todict(markdown_to_json.dictify(response)))