File size: 23,826 Bytes
b9fe2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import binascii
import time
from functools import partial
import re
from copy import deepcopy
from timeit import default_timer as timer
from agentic_reasoning import DeepResearcher
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format, \
    citation_prompt
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.tavily_conn import Tavily


class DialogService(CommonService):
    model = Dialog

    @classmethod
    @DB.connection_context()
    def get_list(cls, tenant_id,
                 page_number, items_per_page, orderby, desc, id, name):
        chats = cls.model.select()
        if id:
            chats = chats.where(cls.model.id == id)
        if name:
            chats = chats.where(cls.model.name == name)
        chats = chats.where(
            (cls.model.tenant_id == tenant_id)
            & (cls.model.status == StatusEnum.VALID.value)
        )
        if desc:
            chats = chats.order_by(cls.model.getter_by(orderby).desc())
        else:
            chats = chats.order_by(cls.model.getter_by(orderby).asc())

        chats = chats.paginate(page_number, items_per_page)

        return list(chats.dicts())


def chat_solo(dialog, messages, stream=True):
    if llm_id2llm_type(dialog.llm_id) == "image2text":
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
    else:
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

    prompt_config = dialog.prompt_config
    tts_mdl = None
    if prompt_config.get("tts"):
        tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
    msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
           for m in messages if m["role"] != "system"]
    if stream:
        last_ans = ""
        for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
            answer = ans
            delta_ans = ans[len(last_ans):]
            if num_tokens_from_string(delta_ans) < 16:
                continue
            last_ans = answer
            yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
        if delta_ans:
            yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
    else:
        answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
        user_content = msg[-1].get("content", "[content not available]")
        logging.debug("User: {}|Assistant: {}".format(user_content, answer))
        yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}


def chat(dialog, messages, stream=True, **kwargs):
    assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
    if not dialog.kb_ids:
        for ans in chat_solo(dialog, messages, stream):
            yield ans
        return

    chat_start_ts = timer()

    if llm_id2llm_type(dialog.llm_id) == "image2text":
        llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
    else:
        llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

    max_tokens = llm_model_config.get("max_tokens", 8192)

    check_llm_ts = timer()

    kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
    embedding_list = list(set([kb.embd_id for kb in kbs]))
    if len(embedding_list) != 1:
        yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
        return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}

    embedding_model_name = embedding_list[0]

    retriever = settings.retrievaler

    questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
    attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
    if "doc_ids" in messages[-1]:
        attachments = messages[-1]["doc_ids"]

    create_retriever_ts = timer()

    embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
    if not embd_mdl:
        raise LookupError("Embedding model(%s) not found" % embedding_model_name)

    bind_embedding_ts = timer()

    if llm_id2llm_type(dialog.llm_id) == "image2text":
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
    else:
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

    bind_llm_ts = timer()

    prompt_config = dialog.prompt_config
    field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
    tts_mdl = None
    if prompt_config.get("tts"):
        tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
    # try to use sql if field mapping is good to go
    if field_map:
        logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
        ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
        if ans:
            yield ans
            return

    for p in prompt_config["parameters"]:
        if p["key"] == "knowledge":
            continue
        if p["key"] not in kwargs and not p["optional"]:
            raise KeyError("Miss parameter: " + p["key"])
        if p["key"] not in kwargs:
            prompt_config["system"] = prompt_config["system"].replace(
                "{%s}" % p["key"], " ")

    if len(questions) > 1 and prompt_config.get("refine_multiturn"):
        questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
    else:
        questions = questions[-1:]

    refine_question_ts = timer()

    rerank_mdl = None
    if dialog.rerank_id:
        rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)

    bind_reranker_ts = timer()
    generate_keyword_ts = bind_reranker_ts
    thought = ""
    kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}

    if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
        knowledges = []
    else:
        if prompt_config.get("keyword", False):
            questions[-1] += keyword_extraction(chat_mdl, questions[-1])
            generate_keyword_ts = timer()

        tenant_ids = list(set([kb.tenant_id for kb in kbs]))

        knowledges = []
        if prompt_config.get("reasoning", False):
            reasoner = DeepResearcher(chat_mdl,
                                      prompt_config,
                                      partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))

            for think in reasoner.thinking(kbinfos, " ".join(questions)):
                if isinstance(think, str):
                    thought = think
                    knowledges = [t for t in think.split("\n") if t]
                elif stream:
                    yield think
        else:
            kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
                                          dialog.similarity_threshold,
                                          dialog.vector_similarity_weight,
                                          doc_ids=attachments,
                                          top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
                                          rank_feature=label_question(" ".join(questions), kbs)
                                          )
            if prompt_config.get("tavily_api_key"):
                tav = Tavily(prompt_config["tavily_api_key"])
                tav_res = tav.retrieve_chunks(" ".join(questions))
                kbinfos["chunks"].extend(tav_res["chunks"])
                kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
            if prompt_config.get("use_kg"):
                ck = settings.kg_retrievaler.retrieval(" ".join(questions),
                                                       tenant_ids,
                                                       dialog.kb_ids,
                                                       embd_mdl,
                                                       LLMBundle(dialog.tenant_id, LLMType.CHAT))
                if ck["content_with_weight"]:
                    kbinfos["chunks"].insert(0, ck)

            knowledges = kb_prompt(kbinfos, max_tokens)

    logging.debug(
        "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))

    retrieval_ts = timer()
    if not knowledges and prompt_config.get("empty_response"):
        empty_res = prompt_config["empty_response"]
        yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
        return {"answer": prompt_config["empty_response"], "reference": kbinfos}

    kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
    gen_conf = dialog.llm_setting

    msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
    prompt4citation = ""
    if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
        prompt4citation = citation_prompt()
    msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
                for m in messages if m["role"] != "system"])
    used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
    assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
    prompt = msg[0]["content"]

    if "max_tokens" in gen_conf:
        gen_conf["max_tokens"] = min(
            gen_conf["max_tokens"],
            max_tokens - used_token_count)

    def decorate_answer(answer):
        nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions

        refs = []
        ans = answer.split("</think>")
        think = ""
        if len(ans) == 2:
            think = ans[0] + "</think>"
            answer = ans[1]
        if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
            answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
            if not re.search(r"##[0-9]+\$\$", answer):
                answer, idx = retriever.insert_citations(answer,
                                                         [ck["content_ltks"]
                                                          for ck in kbinfos["chunks"]],
                                                         [ck["vector"]
                                                          for ck in kbinfos["chunks"]],
                                                         embd_mdl,
                                                         tkweight=1 - dialog.vector_similarity_weight,
                                                         vtweight=dialog.vector_similarity_weight)
            else:
                idx = set([])
                for r in re.finditer(r"##([0-9]+)\$\$", answer):
                    i = int(r.group(1))
                    if i < len(kbinfos["chunks"]):
                        idx.add(i)

            idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
            recall_docs = [
                d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
            if not recall_docs:
                recall_docs = kbinfos["doc_aggs"]
            kbinfos["doc_aggs"] = recall_docs

            refs = deepcopy(kbinfos)
            for c in refs["chunks"]:
                if c.get("vector"):
                    del c["vector"]

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
        finish_chat_ts = timer()

        total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
        check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
        create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
        bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
        bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
        refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
        bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
        generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
        retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
        generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000

        prompt += "\n\n### Query:\n%s" % " ".join(questions)
        prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n  - Check LLM: {check_llm_time_cost:.1f}ms\n  - Create retriever: {create_retriever_time_cost:.1f}ms\n  - Bind embedding: {bind_embedding_time_cost:.1f}ms\n  - Bind LLM: {bind_llm_time_cost:.1f}ms\n  - Tune question: {refine_question_time_cost:.1f}ms\n  - Bind reranker: {bind_reranker_time_cost:.1f}ms\n  - Generate keyword: {generate_keyword_time_cost:.1f}ms\n  - Retrieval: {retrieval_time_cost:.1f}ms\n  - Generate answer: {generate_result_time_cost:.1f}ms"
        return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", "  \n", prompt), "created_at": time.time()}

    if stream:
        last_ans = ""
        answer = ""
        for ans in chat_mdl.chat_streamly(prompt+prompt4citation, msg[1:], gen_conf):
            if thought:
                ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
            answer = ans
            delta_ans = ans[len(last_ans):]
            if num_tokens_from_string(delta_ans) < 16:
                continue
            last_ans = answer
            yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
        delta_ans = answer[len(last_ans):]
        if delta_ans:
            yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
        yield decorate_answer(thought+answer)
    else:
        answer = chat_mdl.chat(prompt+prompt4citation, msg[1:], gen_conf)
        user_content = msg[-1].get("content", "[content not available]")
        logging.debug("User: {}|Assistant: {}".format(user_content, answer))
        res = decorate_answer(answer)
        res["audio_binary"] = tts(tts_mdl, answer)
        yield res


def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
    sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
    user_prompt = """
Table name: {};
Table of database fields are as follows:
{}

Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
""".format(
        index_name(tenant_id),
        "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
        question
    )
    tried_times = 0

    def get_table():
        nonlocal sys_prompt, user_prompt, question, tried_times
        sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
            "temperature": 0.06})
        sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
        logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
        sql = re.sub(r"[\r\n]+", " ", sql.lower())
        sql = re.sub(r".*select ", "select ", sql.lower())
        sql = re.sub(r" +", " ", sql)
        sql = re.sub(r"([;;]|```).*", "", sql)
        if sql[:len("select ")] != "select ":
            return None, None
        if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
            if sql[:len("select *")] != "select *":
                sql = "select doc_id,docnm_kwd," + sql[6:]
            else:
                flds = []
                for k in field_map.keys():
                    if k in forbidden_select_fields4resume:
                        continue
                    if len(flds) > 11:
                        break
                    flds.append(k)
                sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]

        logging.debug(f"{question} get SQL(refined): {sql}")
        tried_times += 1
        return settings.retrievaler.sql_retrieval(sql, format="json"), sql

    tbl, sql = get_table()
    if tbl is None:
        return None
    if tbl.get("error") and tried_times <= 2:
        user_prompt = """
        Table name: {};
        Table of database fields are as follows:
        {}
        
        Question are as follows:
        {}
        Please write the SQL, only SQL, without any other explanations or text.
        

        The SQL error you provided last time is as follows:
        {}

        Error issued by database as follows:
        {}

        Please correct the error and write SQL again, only SQL, without any other explanations or text.
        """.format(
            index_name(tenant_id),
            "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
            question, sql, tbl["error"]
        )
        tbl, sql = get_table()
        logging.debug("TRY it again: {}".format(sql))

    logging.debug("GET table: {}".format(tbl))
    if tbl.get("error") or len(tbl["rows"]) == 0:
        return None

    docid_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "doc_id"])
    doc_name_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "docnm_kwd"])
    column_idx = [ii for ii in range(
        len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]

    # compose Markdown table
    columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
                                                                          tbl["columns"][i]["name"])) for i in
                              column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")

    line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
           ("|------|" if docid_idx and docid_idx else "")

    rows = ["|" +
            "|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
            "|" for r in tbl["rows"]]
    rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
    if quota:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    else:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)

    if not docid_idx or not doc_name_idx:
        logging.warning("SQL missing field: " + sql)
        return {
            "answer": "\n".join([columns, line, rows]),
            "reference": {"chunks": [], "doc_aggs": []},
            "prompt": sys_prompt
        }

    docid_idx = list(docid_idx)[0]
    doc_name_idx = list(doc_name_idx)[0]
    doc_aggs = {}
    for r in tbl["rows"]:
        if r[docid_idx] not in doc_aggs:
            doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
        doc_aggs[r[docid_idx]]["count"] += 1
    return {
        "answer": "\n".join([columns, line, rows]),
        "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
                      "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
                                   doc_aggs.items()]},
        "prompt": sys_prompt
    }


def tts(tts_mdl, text):
    if not tts_mdl or not text:
        return
    bin = b""
    for chunk in tts_mdl.tts(text):
        bin += chunk
    return binascii.hexlify(bin).decode("utf-8")


def ask(question, kb_ids, tenant_id):
    kbs = KnowledgebaseService.get_by_ids(kb_ids)
    embedding_list = list(set([kb.embd_id for kb in kbs]))

    is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
    retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler

    embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
    chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
    max_tokens = chat_mdl.max_length
    tenant_ids = list(set([kb.tenant_id for kb in kbs]))
    kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
                                  1, 12, 0.1, 0.3, aggs=False,
                                  rank_feature=label_question(question, kbs)
                                  )
    knowledges = kb_prompt(kbinfos, max_tokens)
    prompt = """
    Role: You're a smart assistant. Your name is Miss R.
    Task: Summarize the information from knowledge bases and answer user's question.
    Requirements and restriction:
      - DO NOT make things up, especially for numbers.
      - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
      - Answer with markdown format text.
      - Answer in language of user's question.
      - DO NOT make things up, especially for numbers.

    ### Information from knowledge bases
    %s

    The above is information from knowledge bases.

    """ % "\n".join(knowledges)
    msg = [{"role": "user", "content": question}]

    def decorate_answer(answer):
        nonlocal knowledges, kbinfos, prompt
        answer, idx = retriever.insert_citations(answer,
                                                 [ck["content_ltks"]
                                                  for ck in kbinfos["chunks"]],
                                                 [ck["vector"]
                                                  for ck in kbinfos["chunks"]],
                                                 embd_mdl,
                                                 tkweight=0.7,
                                                 vtweight=0.3)
        idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
        recall_docs = [
            d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
        if not recall_docs:
            recall_docs = kbinfos["doc_aggs"]
        kbinfos["doc_aggs"] = recall_docs
        refs = deepcopy(kbinfos)
        for c in refs["chunks"]:
            if c.get("vector"):
                del c["vector"]

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
        refs["chunks"] = chunks_format(refs)
        return {"answer": answer, "reference": refs}

    answer = ""
    for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
        answer = ans
        yield {"answer": answer, "reference": {}}
    yield decorate_answer(answer)