File size: 23,826 Bytes
b9fe2b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import binascii
import time
from functools import partial
import re
from copy import deepcopy
from timeit import default_timer as timer
from agentic_reasoning import DeepResearcher
from api.db import LLMType, ParserType, StatusEnum
from api.db.db_models import Dialog, DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.app.tag import label_question
from rag.nlp.search import index_name
from rag.prompts import kb_prompt, message_fit_in, llm_id2llm_type, keyword_extraction, full_question, chunks_format, \
citation_prompt
from rag.utils import rmSpace, num_tokens_from_string
from rag.utils.tavily_conn import Tavily
class DialogService(CommonService):
model = Dialog
@classmethod
@DB.connection_context()
def get_list(cls, tenant_id,
page_number, items_per_page, orderby, desc, id, name):
chats = cls.model.select()
if id:
chats = chats.where(cls.model.id == id)
if name:
chats = chats.where(cls.model.name == name)
chats = chats.where(
(cls.model.tenant_id == tenant_id)
& (cls.model.status == StatusEnum.VALID.value)
)
if desc:
chats = chats.order_by(cls.model.getter_by(orderby).desc())
else:
chats = chats.order_by(cls.model.getter_by(orderby).asc())
chats = chats.paginate(page_number, items_per_page)
return list(chats.dicts())
def chat_solo(dialog, messages, stream=True):
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
prompt_config = dialog.prompt_config
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
msg = [{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"]
if stream:
last_ans = ""
for ans in chat_mdl.chat_streamly(prompt_config.get("system", ""), msg, dialog.llm_setting):
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
if delta_ans:
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans), "prompt": "", "created_at": time.time()}
else:
answer = chat_mdl.chat(prompt_config.get("system", ""), msg, dialog.llm_setting)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, answer), "prompt": "", "created_at": time.time()}
def chat(dialog, messages, stream=True, **kwargs):
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
if not dialog.kb_ids:
for ans in chat_solo(dialog, messages, stream):
yield ans
return
chat_start_ts = timer()
if llm_id2llm_type(dialog.llm_id) == "image2text":
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
llm_model_config = TenantLLMService.get_model_config(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
max_tokens = llm_model_config.get("max_tokens", 8192)
check_llm_ts = timer()
kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
if len(embedding_list) != 1:
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
embedding_model_name = embedding_list[0]
retriever = settings.retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
if "doc_ids" in messages[-1]:
attachments = messages[-1]["doc_ids"]
create_retriever_ts = timer()
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embedding_model_name)
if not embd_mdl:
raise LookupError("Embedding model(%s) not found" % embedding_model_name)
bind_embedding_ts = timer()
if llm_id2llm_type(dialog.llm_id) == "image2text":
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
else:
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
bind_llm_ts = timer()
prompt_config = dialog.prompt_config
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
tts_mdl = None
if prompt_config.get("tts"):
tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
# try to use sql if field mapping is good to go
if field_map:
logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
if ans:
yield ans
return
for p in prompt_config["parameters"]:
if p["key"] == "knowledge":
continue
if p["key"] not in kwargs and not p["optional"]:
raise KeyError("Miss parameter: " + p["key"])
if p["key"] not in kwargs:
prompt_config["system"] = prompt_config["system"].replace(
"{%s}" % p["key"], " ")
if len(questions) > 1 and prompt_config.get("refine_multiturn"):
questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
else:
questions = questions[-1:]
refine_question_ts = timer()
rerank_mdl = None
if dialog.rerank_id:
rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)
bind_reranker_ts = timer()
generate_keyword_ts = bind_reranker_ts
thought = ""
kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
knowledges = []
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
generate_keyword_ts = timer()
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
knowledges = []
if prompt_config.get("reasoning", False):
reasoner = DeepResearcher(chat_mdl,
prompt_config,
partial(retriever.retrieval, embd_mdl=embd_mdl, tenant_ids=tenant_ids, kb_ids=dialog.kb_ids, page=1, page_size=dialog.top_n, similarity_threshold=0.2, vector_similarity_weight=0.3))
for think in reasoner.thinking(kbinfos, " ".join(questions)):
if isinstance(think, str):
thought = think
knowledges = [t for t in think.split("\n") if t]
elif stream:
yield think
else:
kbinfos = retriever.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=attachments,
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl,
rank_feature=label_question(" ".join(questions), kbs)
)
if prompt_config.get("tavily_api_key"):
tav = Tavily(prompt_config["tavily_api_key"])
tav_res = tav.retrieve_chunks(" ".join(questions))
kbinfos["chunks"].extend(tav_res["chunks"])
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
if prompt_config.get("use_kg"):
ck = settings.kg_retrievaler.retrieval(" ".join(questions),
tenant_ids,
dialog.kb_ids,
embd_mdl,
LLMBundle(dialog.tenant_id, LLMType.CHAT))
if ck["content_with_weight"]:
kbinfos["chunks"].insert(0, ck)
knowledges = kb_prompt(kbinfos, max_tokens)
logging.debug(
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
retrieval_ts = timer()
if not knowledges and prompt_config.get("empty_response"):
empty_res = prompt_config["empty_response"]
yield {"answer": empty_res, "reference": kbinfos, "prompt": "\n\n### Query:\n%s" % " ".join(questions), "audio_binary": tts(tts_mdl, empty_res)}
return {"answer": prompt_config["empty_response"], "reference": kbinfos}
kwargs["knowledge"] = "\n------\n" + "\n\n------\n\n".join(knowledges)
gen_conf = dialog.llm_setting
msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
prompt4citation = ""
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
prompt4citation = citation_prompt()
msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
for m in messages if m["role"] != "system"])
used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.95))
assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
prompt = msg[0]["content"]
if "max_tokens" in gen_conf:
gen_conf["max_tokens"] = min(
gen_conf["max_tokens"],
max_tokens - used_token_count)
def decorate_answer(answer):
nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_ts, questions
refs = []
ans = answer.split("</think>")
think = ""
if len(ans) == 2:
think = ans[0] + "</think>"
answer = ans[1]
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer = re.sub(r"##[ij]\$\$", "", answer, flags=re.DOTALL)
if not re.search(r"##[0-9]+\$\$", answer):
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=1 - dialog.vector_similarity_weight,
vtweight=dialog.vector_similarity_weight)
else:
idx = set([])
for r in re.finditer(r"##([0-9]+)\$\$", answer):
i = int(r.group(1))
if i < len(kbinfos["chunks"]):
idx.add(i)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
finish_chat_ts = timer()
total_time_cost = (finish_chat_ts - chat_start_ts) * 1000
check_llm_time_cost = (check_llm_ts - chat_start_ts) * 1000
create_retriever_time_cost = (create_retriever_ts - check_llm_ts) * 1000
bind_embedding_time_cost = (bind_embedding_ts - create_retriever_ts) * 1000
bind_llm_time_cost = (bind_llm_ts - bind_embedding_ts) * 1000
refine_question_time_cost = (refine_question_ts - bind_llm_ts) * 1000
bind_reranker_time_cost = (bind_reranker_ts - refine_question_ts) * 1000
generate_keyword_time_cost = (generate_keyword_ts - bind_reranker_ts) * 1000
retrieval_time_cost = (retrieval_ts - generate_keyword_ts) * 1000
generate_result_time_cost = (finish_chat_ts - retrieval_ts) * 1000
prompt += "\n\n### Query:\n%s" % " ".join(questions)
prompt = f"{prompt}\n\n - Total: {total_time_cost:.1f}ms\n - Check LLM: {check_llm_time_cost:.1f}ms\n - Create retriever: {create_retriever_time_cost:.1f}ms\n - Bind embedding: {bind_embedding_time_cost:.1f}ms\n - Bind LLM: {bind_llm_time_cost:.1f}ms\n - Tune question: {refine_question_time_cost:.1f}ms\n - Bind reranker: {bind_reranker_time_cost:.1f}ms\n - Generate keyword: {generate_keyword_time_cost:.1f}ms\n - Retrieval: {retrieval_time_cost:.1f}ms\n - Generate answer: {generate_result_time_cost:.1f}ms"
return {"answer": think+answer, "reference": refs, "prompt": re.sub(r"\n", " \n", prompt), "created_at": time.time()}
if stream:
last_ans = ""
answer = ""
for ans in chat_mdl.chat_streamly(prompt+prompt4citation, msg[1:], gen_conf):
if thought:
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
answer = ans
delta_ans = ans[len(last_ans):]
if num_tokens_from_string(delta_ans) < 16:
continue
last_ans = answer
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
delta_ans = answer[len(last_ans):]
if delta_ans:
yield {"answer": thought+answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
yield decorate_answer(thought+answer)
else:
answer = chat_mdl.chat(prompt+prompt4citation, msg[1:], gen_conf)
user_content = msg[-1].get("content", "[content not available]")
logging.debug("User: {}|Assistant: {}".format(user_content, answer))
res = decorate_answer(answer)
res["audio_binary"] = tts(tts_mdl, answer)
yield res
def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
sys_prompt = "You are a Database Administrator. You need to check the fields of the following tables based on the user's list of questions and write the SQL corresponding to the last question."
user_prompt = """
Table name: {};
Table of database fields are as follows:
{}
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question
)
tried_times = 0
def get_table():
nonlocal sys_prompt, user_prompt, question, tried_times
sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_prompt}], {
"temperature": 0.06})
sql = re.sub(r"<think>.*</think>", "", sql, flags=re.DOTALL)
logging.debug(f"{question} ==> {user_prompt} get SQL: {sql}")
sql = re.sub(r"[\r\n]+", " ", sql.lower())
sql = re.sub(r".*select ", "select ", sql.lower())
sql = re.sub(r" +", " ", sql)
sql = re.sub(r"([;;]|```).*", "", sql)
if sql[:len("select ")] != "select ":
return None, None
if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
if sql[:len("select *")] != "select *":
sql = "select doc_id,docnm_kwd," + sql[6:]
else:
flds = []
for k in field_map.keys():
if k in forbidden_select_fields4resume:
continue
if len(flds) > 11:
break
flds.append(k)
sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]
logging.debug(f"{question} get SQL(refined): {sql}")
tried_times += 1
return settings.retrievaler.sql_retrieval(sql, format="json"), sql
tbl, sql = get_table()
if tbl is None:
return None
if tbl.get("error") and tried_times <= 2:
user_prompt = """
Table name: {};
Table of database fields are as follows:
{}
Question are as follows:
{}
Please write the SQL, only SQL, without any other explanations or text.
The SQL error you provided last time is as follows:
{}
Error issued by database as follows:
{}
Please correct the error and write SQL again, only SQL, without any other explanations or text.
""".format(
index_name(tenant_id),
"\n".join([f"{k}: {v}" for k, v in field_map.items()]),
question, sql, tbl["error"]
)
tbl, sql = get_table()
logging.debug("TRY it again: {}".format(sql))
logging.debug("GET table: {}".format(tbl))
if tbl.get("error") or len(tbl["rows"]) == 0:
return None
docid_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "doc_id"])
doc_name_idx = set([ii for ii, c in enumerate(
tbl["columns"]) if c["name"] == "docnm_kwd"])
column_idx = [ii for ii in range(
len(tbl["columns"])) if ii not in (docid_idx | doc_name_idx)]
# compose Markdown table
columns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
tbl["columns"][i]["name"])) for i in
column_idx]) + ("|Source|" if docid_idx and docid_idx else "|")
line = "|" + "|".join(["------" for _ in range(len(column_idx))]) + \
("|------|" if docid_idx and docid_idx else "")
rows = ["|" +
"|".join([rmSpace(str(r[i])) for i in column_idx]).replace("None", " ") +
"|" for r in tbl["rows"]]
rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
if quota:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
else:
rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)
if not docid_idx or not doc_name_idx:
logging.warning("SQL missing field: " + sql)
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [], "doc_aggs": []},
"prompt": sys_prompt
}
docid_idx = list(docid_idx)[0]
doc_name_idx = list(doc_name_idx)[0]
doc_aggs = {}
for r in tbl["rows"]:
if r[docid_idx] not in doc_aggs:
doc_aggs[r[docid_idx]] = {"doc_name": r[doc_name_idx], "count": 0}
doc_aggs[r[docid_idx]]["count"] += 1
return {
"answer": "\n".join([columns, line, rows]),
"reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[doc_name_idx]} for r in tbl["rows"]],
"doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
doc_aggs.items()]},
"prompt": sys_prompt
}
def tts(tts_mdl, text):
if not tts_mdl or not text:
return
bin = b""
for chunk in tts_mdl.tts(text):
bin += chunk
return binascii.hexlify(bin).decode("utf-8")
def ask(question, kb_ids, tenant_id):
kbs = KnowledgebaseService.get_by_ids(kb_ids)
embedding_list = list(set([kb.embd_id for kb in kbs]))
is_knowledge_graph = all([kb.parser_id == ParserType.KG for kb in kbs])
retriever = settings.retrievaler if not is_knowledge_graph else settings.kg_retrievaler
embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embedding_list[0])
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
max_tokens = chat_mdl.max_length
tenant_ids = list(set([kb.tenant_id for kb in kbs]))
kbinfos = retriever.retrieval(question, embd_mdl, tenant_ids, kb_ids,
1, 12, 0.1, 0.3, aggs=False,
rank_feature=label_question(question, kbs)
)
knowledges = kb_prompt(kbinfos, max_tokens)
prompt = """
Role: You're a smart assistant. Your name is Miss R.
Task: Summarize the information from knowledge bases and answer user's question.
Requirements and restriction:
- DO NOT make things up, especially for numbers.
- If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
- Answer with markdown format text.
- Answer in language of user's question.
- DO NOT make things up, especially for numbers.
### Information from knowledge bases
%s
The above is information from knowledge bases.
""" % "\n".join(knowledges)
msg = [{"role": "user", "content": question}]
def decorate_answer(answer):
nonlocal knowledges, kbinfos, prompt
answer, idx = retriever.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]
for ck in kbinfos["chunks"]],
embd_mdl,
tkweight=0.7,
vtweight=0.3)
idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
recall_docs = [
d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
if not recall_docs:
recall_docs = kbinfos["doc_aggs"]
kbinfos["doc_aggs"] = recall_docs
refs = deepcopy(kbinfos)
for c in refs["chunks"]:
if c.get("vector"):
del c["vector"]
if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
refs["chunks"] = chunks_format(refs)
return {"answer": answer, "reference": refs}
answer = ""
for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
answer = ans
yield {"answer": answer, "reference": {}}
yield decorate_answer(answer)
|