File size: 11,141 Bytes
b9fe2b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.conversation_service import structure_answer
from api.db.services.llm_service import LLMBundle
from api import settings
from agent.component.base import ComponentBase, ComponentParamBase
from rag.prompts import message_fit_in


class GenerateParam(ComponentParamBase):
    """
    Define the Generate component parameters.
    """

    def __init__(self):
        super().__init__()
        self.llm_id = ""
        self.prompt = ""
        self.max_tokens = 0
        self.temperature = 0
        self.top_p = 0
        self.presence_penalty = 0
        self.frequency_penalty = 0
        self.cite = True
        self.parameters = []

    def check(self):
        self.check_decimal_float(self.temperature, "[Generate] Temperature")
        self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
        self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
        self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
        self.check_decimal_float(self.top_p, "[Generate] Top P")
        self.check_empty(self.llm_id, "[Generate] LLM")
        # self.check_defined_type(self.parameters, "Parameters", ["list"])

    def gen_conf(self):
        conf = {}
        if self.max_tokens > 0:
            conf["max_tokens"] = self.max_tokens
        if self.temperature > 0:
            conf["temperature"] = self.temperature
        if self.top_p > 0:
            conf["top_p"] = self.top_p
        if self.presence_penalty > 0:
            conf["presence_penalty"] = self.presence_penalty
        if self.frequency_penalty > 0:
            conf["frequency_penalty"] = self.frequency_penalty
        return conf


class Generate(ComponentBase):
    component_name = "Generate"

    def get_dependent_components(self):
        inputs = self.get_input_elements()
        cpnts = set([i["key"] for i in inputs[1:] if i["key"].lower().find("answer") < 0 and i["key"].lower().find("begin") < 0])
        return list(cpnts)

    def set_cite(self, retrieval_res, answer):
        retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
        if "empty_response" in retrieval_res.columns:
            retrieval_res["empty_response"].fillna("", inplace=True)
        answer, idx = settings.retrievaler.insert_citations(answer,
                                                            [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
                                                            [ck["vector"] for _, ck in retrieval_res.iterrows()],
                                                            LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
                                                                      self._canvas.get_embedding_model()), tkweight=0.7,
                                                            vtweight=0.3)
        doc_ids = set([])
        recall_docs = []
        for i in idx:
            did = retrieval_res.loc[int(i), "doc_id"]
            if did in doc_ids:
                continue
            doc_ids.add(did)
            recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})

        del retrieval_res["vector"]
        del retrieval_res["content_ltks"]

        reference = {
            "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
            "doc_aggs": recall_docs
        }

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
        res = {"content": answer, "reference": reference}
        res = structure_answer(None, res, "", "")

        return res

    def get_input_elements(self):
        key_set = set([])
        res = [{"key": "user", "name": "Input your question here:"}]
        for r in re.finditer(r"\{([a-z]+[:@][a-z0-9_-]+)\}", self._param.prompt, flags=re.IGNORECASE):
            cpn_id = r.group(1)
            if cpn_id in key_set:
                continue
            if cpn_id.lower().find("begin@") == 0:
                cpn_id, key = cpn_id.split("@")
                for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
                    if p["key"] != key:
                        continue
                    res.append({"key": r.group(1), "name": p["name"]})
                    key_set.add(r.group(1))
                continue
            cpn_nm = self._canvas.get_component_name(cpn_id)
            if not cpn_nm:
                continue
            res.append({"key": cpn_id, "name": cpn_nm})
            key_set.add(cpn_id)
        return res

    def _run(self, history, **kwargs):
        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
        prompt = self._param.prompt

        retrieval_res = []
        self._param.inputs = []
        for para in self.get_input_elements()[1:]:
            if para["key"].lower().find("begin@") == 0:
                cpn_id, key = para["key"].split("@")
                for p in self._canvas.get_component(cpn_id)["obj"]._param.query:
                    if p["key"] == key:
                        kwargs[para["key"]] = p.get("value", "")
                        self._param.inputs.append(
                            {"component_id": para["key"], "content": kwargs[para["key"]]})
                        break
                else:
                    assert False, f"Can't find parameter '{key}' for {cpn_id}"
                continue

            component_id = para["key"]
            cpn = self._canvas.get_component(component_id)["obj"]
            if cpn.component_name.lower() == "answer":
                hist = self._canvas.get_history(1)
                if hist:
                    hist = hist[0]["content"]
                else:
                    hist = ""
                kwargs[para["key"]] = hist
                continue
            _, out = cpn.output(allow_partial=False)
            if "content" not in out.columns:
                kwargs[para["key"]] = ""
            else:
                if cpn.component_name.lower() == "retrieval":
                    retrieval_res.append(out)
                kwargs[para["key"]] = "  - " + "\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
            self._param.inputs.append({"component_id": para["key"], "content": kwargs[para["key"]]})

        if retrieval_res:
            retrieval_res = pd.concat(retrieval_res, ignore_index=True)
        else:
            retrieval_res = pd.DataFrame([])

        for n, v in kwargs.items():
            prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)

        if not self._param.inputs and prompt.find("{input}") >= 0:
            retrieval_res = self.get_input()
            input = ("  - " + "\n  - ".join(
                [c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
            prompt = re.sub(r"\{input\}", re.escape(input), prompt)

        downstreams = self._canvas.get_component(self._id)["downstream"]
        if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
            "obj"].component_name.lower() == "answer":
            return partial(self.stream_output, chat_mdl, prompt, retrieval_res)

        if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
            empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
            res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
            return pd.DataFrame([res])

        msg = self._canvas.get_history(self._param.message_history_window_size)
        if len(msg) < 1:
            msg.append({"role": "user", "content": "Output: "})
        _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
        if len(msg) < 2:
            msg.append({"role": "user", "content": "Output: "})
        ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())
        ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            res = self.set_cite(retrieval_res, ans)
            return pd.DataFrame([res])

        return Generate.be_output(ans)

    def stream_output(self, chat_mdl, prompt, retrieval_res):
        res = None
        if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
            empty_res = "\n- ".join([str(t) for t in retrieval_res["empty_response"] if str(t)])
            res = {"content": empty_res if empty_res else "Nothing found in knowledgebase!", "reference": []}
            yield res
            self.set_output(res)
            return

        msg = self._canvas.get_history(self._param.message_history_window_size)
        if msg and msg[0]['role'] == 'assistant':
            msg.pop(0)
        if len(msg) < 1:
            msg.append({"role": "user", "content": "Output: "})
        _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
        if len(msg) < 2:
            msg.append({"role": "user", "content": "Output: "})
        answer = ""
        for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
            res = {"content": ans, "reference": []}
            answer = ans
            yield res

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            res = self.set_cite(retrieval_res, answer)
            yield res

        self.set_output(Generate.be_output(res))

    def debug(self, **kwargs):
        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
        prompt = self._param.prompt

        for para in self._param.debug_inputs:
            kwargs[para["key"]] = para.get("value", "")

        for n, v in kwargs.items():
            prompt = re.sub(r"\{%s\}" % re.escape(n), str(v).replace("\\", " "), prompt)

        u = kwargs.get("user")
        ans = chat_mdl.chat(prompt, [{"role": "user", "content": u if u else "Output: "}], self._param.gen_conf())
        return pd.DataFrame([ans])