Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,54 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# Загрузка модели и токенизатора
|
| 5 |
+
model_name = "deepseek/r1"
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
def inference(prompt, temperature, top_p, max_length):
|
| 10 |
+
try:
|
| 11 |
+
# Токенизация входного текста
|
| 12 |
+
inputs = tokenizer(prompt, return_tensors="np")
|
| 13 |
+
|
| 14 |
+
# Генерация ответа
|
| 15 |
+
outputs = model.generate(
|
| 16 |
+
inputs.input_ids,
|
| 17 |
+
max_length=max_length,
|
| 18 |
+
temperature=temperature,
|
| 19 |
+
top_p=top_p,
|
| 20 |
+
do_sample=True
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Декодирование ответа
|
| 24 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 25 |
+
return response
|
| 26 |
+
|
| 27 |
+
except Exception as e:
|
| 28 |
+
return f"Ошибка: {str(e)}"
|
| 29 |
+
|
| 30 |
+
# Создание интерфейса Gradio
|
| 31 |
+
with gr.Blocks() as demo:
|
| 32 |
+
gr.Markdown("# DeepSeek-r1 Model")
|
| 33 |
+
|
| 34 |
+
with gr.Row():
|
| 35 |
+
input_text = gr.Textbox(label="Входной текст", placeholder="Введите ваш текст здесь...")
|
| 36 |
+
output_text = gr.Textbox(label="Выходной текст", placeholder="Ответ модели появится здесь...")
|
| 37 |
+
|
| 38 |
+
with gr.Row():
|
| 39 |
+
max_length = gr.Slider(label="Max Length", minimum=1, maximum=1000, value=500)
|
| 40 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=1.0)
|
| 41 |
+
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=1.0)
|
| 42 |
+
|
| 43 |
+
run_button = gr.Button("Run")
|
| 44 |
+
|
| 45 |
+
# Подключение функции к кнопке
|
| 46 |
+
run_button.click(
|
| 47 |
+
fn=inference,
|
| 48 |
+
inputs=[input_text, temperature, top_p, max_length],
|
| 49 |
+
outputs=output_text
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Запуск приложения
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
demo.launch()
|