Upload rrdbnet_arch.py
Browse files- rrdbnet_arch.py +121 -0
rrdbnet_arch.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn as nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
|
| 5 |
+
from arch_util import default_init_weights, make_layer, pixel_unshuffle
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ResidualDenseBlock(nn.Module):
|
| 9 |
+
"""Residual Dense Block.
|
| 10 |
+
|
| 11 |
+
Used in RRDB block in ESRGAN.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
num_feat (int): Channel number of intermediate features.
|
| 15 |
+
num_grow_ch (int): Channels for each growth.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, num_feat=64, num_grow_ch=32):
|
| 19 |
+
super(ResidualDenseBlock, self).__init__()
|
| 20 |
+
self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
|
| 21 |
+
self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 22 |
+
self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 23 |
+
self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
|
| 24 |
+
self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
|
| 25 |
+
|
| 26 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 27 |
+
|
| 28 |
+
# initialization
|
| 29 |
+
default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
| 30 |
+
|
| 31 |
+
def forward(self, x):
|
| 32 |
+
x1 = self.lrelu(self.conv1(x))
|
| 33 |
+
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
| 34 |
+
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
| 35 |
+
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
| 36 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
| 37 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
| 38 |
+
return x5 * 0.2 + x
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class RRDB(nn.Module):
|
| 42 |
+
"""Residual in Residual Dense Block.
|
| 43 |
+
|
| 44 |
+
Used in RRDB-Net in ESRGAN.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
num_feat (int): Channel number of intermediate features.
|
| 48 |
+
num_grow_ch (int): Channels for each growth.
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(self, num_feat, num_grow_ch=32):
|
| 52 |
+
super(RRDB, self).__init__()
|
| 53 |
+
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 54 |
+
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 55 |
+
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
out = self.rdb1(x)
|
| 59 |
+
out = self.rdb2(out)
|
| 60 |
+
out = self.rdb3(out)
|
| 61 |
+
# Emperically, we use 0.2 to scale the residual for better performance
|
| 62 |
+
return out * 0.2 + x
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class RRDBNet(nn.Module):
|
| 66 |
+
"""Networks consisting of Residual in Residual Dense Block, which is used
|
| 67 |
+
in ESRGAN.
|
| 68 |
+
|
| 69 |
+
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
|
| 70 |
+
|
| 71 |
+
We extend ESRGAN for scale x2 and scale x1.
|
| 72 |
+
Note: This is one option for scale 1, scale 2 in RRDBNet.
|
| 73 |
+
We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
|
| 74 |
+
and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
|
| 75 |
+
|
| 76 |
+
Args:
|
| 77 |
+
num_in_ch (int): Channel number of inputs.
|
| 78 |
+
num_out_ch (int): Channel number of outputs.
|
| 79 |
+
num_feat (int): Channel number of intermediate features.
|
| 80 |
+
Default: 64
|
| 81 |
+
num_block (int): Block number in the trunk network. Defaults: 23
|
| 82 |
+
num_grow_ch (int): Channels for each growth. Default: 32.
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
|
| 86 |
+
super(RRDBNet, self).__init__()
|
| 87 |
+
self.scale = scale
|
| 88 |
+
if scale == 2:
|
| 89 |
+
num_in_ch = num_in_ch * 4
|
| 90 |
+
elif scale == 1:
|
| 91 |
+
num_in_ch = num_in_ch * 16
|
| 92 |
+
self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
| 93 |
+
self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
|
| 94 |
+
self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 95 |
+
# upsample
|
| 96 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 97 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 98 |
+
if scale == 8:
|
| 99 |
+
self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 100 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
| 101 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 102 |
+
|
| 103 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
if self.scale == 2:
|
| 107 |
+
feat = pixel_unshuffle(x, scale=2)
|
| 108 |
+
elif self.scale == 1:
|
| 109 |
+
feat = pixel_unshuffle(x, scale=4)
|
| 110 |
+
else:
|
| 111 |
+
feat = x
|
| 112 |
+
feat = self.conv_first(feat)
|
| 113 |
+
body_feat = self.conv_body(self.body(feat))
|
| 114 |
+
feat = feat + body_feat
|
| 115 |
+
# upsample
|
| 116 |
+
feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
| 117 |
+
feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
| 118 |
+
if self.scale == 8:
|
| 119 |
+
feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
| 120 |
+
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
| 121 |
+
return out
|