Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,040 Bytes
b89eee2 6781e5a aff85de b89eee2 6781e5a b89eee2 10e5f03 d12ce0d b89eee2 6781e5a 10e5f03 6781e5a 10e5f03 6781e5a 10e5f03 6781e5a 10e5f03 b89eee2 6781e5a b89eee2 0addaa1 6781e5a d12ce0d 6781e5a b89eee2 6781e5a 10e5f03 b89eee2 10e5f03 6781e5a 0addaa1 6781e5a 2f3f0e6 6781e5a 2f3f0e6 10e5f03 6781e5a b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a 10e5f03 b89eee2 6781e5a 10e5f03 b89eee2 6781e5a b89eee2 10e5f03 b89eee2 6781e5a 10e5f03 b89eee2 6781e5a 10e5f03 6781e5a b89eee2 6781e5a 10e5f03 b89eee2 10e5f03 b89eee2 6781e5a b89eee2 6781e5a b89eee2 6781e5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
from __future__ import annotations
import functools
import os
import tempfile
import torch
import spaces
import gradio as gr
from PIL import Image
from gradio_imageslider import ImageSlider
from pathlib import Path
from gradio.utils import get_cache_folder
class Examples(gr.helpers.Examples):
def __init__(self, *args, directory_name=None, **kwargs):
super().__init__(*args, **kwargs, _initiated_directly=False)
if directory_name is not None:
self.cached_folder = get_cache_folder() / directory_name
self.cached_file = Path(self.cached_folder) / "log.csv"
self.create()
# Global variable to store loaded predictors
predictors = {}
# Available model versions
MODEL_VERSIONS = {
"v0.3": "yoso-normal-v0-3",
"v1.0": "yoso-normal-v1-0",
"v1.5": "yoso-normal-v1-5",
"v1.8.1": "yoso-normal-v1-8-1"
}
def load_predictor(version: str = "v1.8.1"):
"""Load model predictor using torch.hub with specified version"""
if version not in predictors:
yoso_version = MODEL_VERSIONS[version]
print(f"Loading StableNormal with {yoso_version}...")
predictor = torch.hub.load("Stable-X/StableNormal", "StableNormal_turbo",
trust_repo=True, yoso_version=yoso_version)
predictors[version] = predictor
print(f"Successfully loaded {version}")
return predictors[version]
def precache_all_predictors():
"""Precache all model predictors at startup"""
print("Precaching all StableNormal predictors...")
for version in MODEL_VERSIONS.keys():
print(f"Precaching {version}...")
try:
load_predictor(version)
print(f"✓ Successfully precached {version}")
except Exception as e:
print(f"✗ Failed to precache {version}: {e}")
print("Finished precaching all predictors.")
def process_image(
path_input: str,
version: str = "v1.8.1",
data_type: str = "object"
) -> tuple:
"""Process single image with specified model version"""
if path_input is None:
raise gr.Error("Please upload an image or select one from the gallery.")
# Load the predictor for the specified version
predictor = load_predictor(version)
name_base = os.path.splitext(os.path.basename(path_input))[0]
out_path = os.path.join(tempfile.mkdtemp(), f"{name_base}_normal_{version.replace('.', '_')}.png")
# Load and process image
input_image = Image.open(path_input)
normal_image = predictor(input_image, match_input_resolution=False, data_type=data_type)
normal_image.save(out_path)
yield [input_image, out_path]
def create_demo():
# Precache all predictors before creating the demo
precache_all_predictors()
# Create processing function
process_object = spaces.GPU(process_image)
# Define markdown content
HEADER_MD = """
# 🎪 StableNormal Turbo
<p align="center">
<a title="Website" href="https://stable-x.github.io/StableNormal/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://arxiv.org/abs/2406.16864" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/StableNormal" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/StableNormal?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
Select between different YOSO Normal model versions. Each version may have different performance characteristics and quality trade-offs.
"""
# Create interface
demo = gr.Blocks(
title="Stable Normal Estimation",
css="""
.slider .inner { width: 5px; background: #FFF; }
.viewport { aspect-ratio: 4/3; }
.tabs button.selected { font-size: 20px !important; color: crimson !important; }
h1, h2, h3 { text-align: center; display: block; }
.md_feedback li { margin-bottom: 0px !important; }
"""
)
with demo:
gr.Markdown(HEADER_MD)
with gr.Tabs() as tabs:
# Object Tab
with gr.Tab("Object"):
with gr.Row():
with gr.Column():
object_input = gr.Image(label="Input Object Image", type="filepath")
# Model version selector
version_dropdown = gr.Dropdown(
choices=list(MODEL_VERSIONS.keys()),
value="v1.8.1",
label="Model Version",
info="Select YOSO Normal model version"
)
with gr.Row():
object_submit_btn = gr.Button("Compute Normal", variant="primary")
object_reset_btn = gr.Button("Reset")
with gr.Column():
object_output_slider = ImageSlider(
label="Normal outputs",
type="filepath",
show_download_button=True,
show_share_button=True,
interactive=False,
elem_classes="slider",
position=0.25,
)
# Model version info
with gr.Row():
gr.Markdown("""
**Model Version Information:**
- **v0.3**: Camera Ready Version
- **v1.0**: Improve stability, but poor sharpness
- **v1.5**: Enhanced performance and accuracy
- **v1.8.1**: Latest version with best sharpness (default)
*All models are precached and ready for instant switching.*
""")
# Examples section
if os.path.exists(os.path.join("files", "object")):
Examples(
fn=lambda img, ver: process_object(img, ver),
examples=sorted([
[os.path.join("files", "object", name), "v1.8.1"]
for name in os.listdir(os.path.join("files", "object"))
]),
inputs=[object_input, version_dropdown],
outputs=[object_output_slider],
cache_examples=False,
directory_name="examples_object",
examples_per_page=50,
)
# Event Handlers for Object Tab
object_submit_btn.click(
fn=lambda x, v: None if x else gr.Error("Please upload an image"),
inputs=[object_input, version_dropdown],
outputs=None,
queue=False,
).success(
fn=process_object,
inputs=[object_input, version_dropdown],
outputs=[object_output_slider],
)
object_reset_btn.click(
fn=lambda: (None, "v1.8.1", None),
inputs=[],
outputs=[object_input, version_dropdown, object_output_slider],
queue=False,
)
return demo
def main():
demo = create_demo()
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
)
if __name__ == "__main__":
main() |