File size: 6,871 Bytes
168b252
 
 
 
 
 
 
 
 
 
 
 
ac25c40
 
168b252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
from ...modules.sparse import SparseTensor
from easydict import EasyDict as edict
from .utils_cube import *
from .flexicube import FlexiCubes
import numpy as np
import trimesh

class MeshExtractResult:
    def __init__(self,
        vertices,
        faces,
        vertex_attrs=None,
        res=64
    ):
        self.vertices = vertices
        self.faces = faces.long()
        self.vertex_attrs = vertex_attrs
        self.vertex_normal = self.comput_v_normals(vertices, faces)
        self.face_normal = self.comput_face_normals(vertices, faces)
        self.res = res
        self.success = (vertices.shape[0] != 0 and faces.shape[0] != 0)

        # training only
        self.tsdf_v = None
        self.tsdf_s = None
        self.reg_loss = None
        
    def comput_face_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()

        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        face_normals = torch.nn.functional.normalize(face_normals, dim=1)
        # print(face_normals.min(), face_normals.max(), face_normals.shape)
        return face_normals[:, None, :].repeat(1, 3, 1)
                
    def comput_v_normals(self, verts, faces):
        i0 = faces[..., 0].long()
        i1 = faces[..., 1].long()
        i2 = faces[..., 2].long()

        v0 = verts[i0, :]
        v1 = verts[i1, :]
        v2 = verts[i2, :]
        face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
        v_normals = torch.zeros_like(verts)
        v_normals.scatter_add_(0, i0[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i1[..., None].repeat(1, 3), face_normals)
        v_normals.scatter_add_(0, i2[..., None].repeat(1, 3), face_normals)

        v_normals = torch.nn.functional.normalize(v_normals, dim=1)
        return v_normals   
    
    def to_trimesh(self, transform_pose=False):
        vertices = self.vertices.detach().cpu().numpy()
        faces = self.faces.detach().cpu().numpy()
        
        if transform_pose:
            transform_matrix = np.array([
                [1, 0, 0],
                [0, 0, -1],
                [0, 1, 0]
            ])
            vertices = vertices @ transform_matrix
            vertex_normals = self.vertex_normal.detach().cpu().numpy() @ transform_matrix
        else:
            vertex_normals = self.vertex_normal.detach().cpu().numpy()
        
        # Create the trimesh mesh
        mesh = trimesh.Trimesh(
            vertices=vertices,
            faces=faces,
            face_normals=self.face_normal.detach().cpu().numpy(),
            vertex_normals=vertex_normals
        )
        
        return mesh


class SparseFeatures2Mesh:
    def __init__(self, device="cuda", res=64, use_color=True):
        '''
        a model to generate a mesh from sparse features structures using flexicube
        '''
        super().__init__()
        self.device=device
        self.res = res
        self.mesh_extractor = FlexiCubes(device=device)
        self.sdf_bias = -1.0 / res
        verts, cube = construct_dense_grid(self.res, self.device)
        self.reg_c = cube.to(self.device)
        self.reg_v = verts.to(self.device)
        self.use_color = use_color
        self._calc_layout()
    
    def _calc_layout(self):
        LAYOUTS = {
            'sdf': {'shape': (8, 1), 'size': 8},
            'deform': {'shape': (8, 3), 'size': 8 * 3},
            'weights': {'shape': (21,), 'size': 21}
        }
        if self.use_color:
            '''
            6 channel color including normal map
            '''
            LAYOUTS['color'] = {'shape': (8, 6,), 'size': 8 * 6}
        self.layouts = edict(LAYOUTS)
        start = 0
        for k, v in self.layouts.items():
            v['range'] = (start, start + v['size'])
            start += v['size']
        self.feats_channels = start
        
    def get_layout(self, feats : torch.Tensor, name : str):
        if name not in self.layouts:
            return None
        return feats[:, self.layouts[name]['range'][0]:self.layouts[name]['range'][1]].reshape(-1, *self.layouts[name]['shape'])
    
    def __call__(self, cubefeats : SparseTensor, training=False):
        """
        Generates a mesh based on the specified sparse voxel structures.
        Args:
            cube_attrs [Nx21] : Sparse Tensor attrs about cube weights
            verts_attrs [Nx10] : [0:1] SDF [1:4] deform [4:7] color [7:10] normal 
        Returns:
            return the success tag and ni you loss, 
        """
        # add sdf bias to verts_attrs
        coords = cubefeats.coords[:, 1:]
        feats = cubefeats.feats
        
        sdf, deform, color, weights = [self.get_layout(feats, name) for name in ['sdf', 'deform', 'color', 'weights']]
        sdf += self.sdf_bias
        v_attrs = [sdf, deform, color] if self.use_color else [sdf, deform]
        v_pos, v_attrs, reg_loss = sparse_cube2verts(coords, torch.cat(v_attrs, dim=-1), training=training)
        v_attrs_d = get_dense_attrs(v_pos, v_attrs, res=self.res+1, sdf_init=True)
        weights_d = get_dense_attrs(coords, weights, res=self.res, sdf_init=False)
        if self.use_color:
            sdf_d, deform_d, colors_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4], v_attrs_d[..., 4:]
        else:
            sdf_d, deform_d = v_attrs_d[..., 0], v_attrs_d[..., 1:4]
            colors_d = None
            
        x_nx3 = get_defomed_verts(self.reg_v, deform_d, self.res)
        
        vertices, faces, L_dev, colors = self.mesh_extractor(
            voxelgrid_vertices=x_nx3,
            scalar_field=sdf_d,
            cube_idx=self.reg_c,
            resolution=self.res,
            beta=weights_d[:, :12],
            alpha=weights_d[:, 12:20],
            gamma_f=weights_d[:, 20],
            voxelgrid_colors=colors_d,
            training=training)
        
        mesh = MeshExtractResult(vertices=vertices, faces=faces, vertex_attrs=colors, res=self.res)
        if training:
            if mesh.success:
                reg_loss += L_dev.mean() * 0.5
            reg_loss += (weights[:,:20]).abs().mean() * 0.2
            mesh.reg_loss = reg_loss
            mesh.tsdf_v = get_defomed_verts(v_pos, v_attrs[:, 1:4], self.res)
            mesh.tsdf_s = v_attrs[:, 0]
        return mesh