Spaces:
Runtime error
Runtime error
Upload 8 files
Browse files- agent.py +801 -0
- code_interpreter.py +281 -0
- explore_metadata.ipynb +332 -0
- image_processing.py +26 -0
- metadata.jsonl +0 -0
- requirements.txt +20 -0
- supabase_docs.csv +0 -0
- system_prompt.txt +5 -0
agent.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
+
import tempfile
|
5 |
+
import re
|
6 |
+
import json
|
7 |
+
import requests
|
8 |
+
from urllib.parse import urlparse
|
9 |
+
import pytesseract
|
10 |
+
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
|
11 |
+
import cmath
|
12 |
+
import pandas as pd
|
13 |
+
import uuid
|
14 |
+
import numpy as np
|
15 |
+
from code_interpreter import CodeInterpreter
|
16 |
+
|
17 |
+
interpreter_instance = CodeInterpreter()
|
18 |
+
|
19 |
+
from image_processing import *
|
20 |
+
|
21 |
+
"""Langraph"""
|
22 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
23 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
24 |
+
from langchain_community.document_loaders import WikipediaLoader
|
25 |
+
from langchain_community.document_loaders import ArxivLoader
|
26 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
27 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
28 |
+
from langchain_groq import ChatGroq
|
29 |
+
from langchain_huggingface import (
|
30 |
+
ChatHuggingFace,
|
31 |
+
HuggingFaceEndpoint,
|
32 |
+
HuggingFaceEmbeddings,
|
33 |
+
)
|
34 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
35 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
36 |
+
from langchain_core.tools import tool
|
37 |
+
from langchain.tools.retriever import create_retriever_tool
|
38 |
+
from supabase.client import Client, create_client
|
39 |
+
|
40 |
+
load_dotenv()
|
41 |
+
|
42 |
+
### =============== BROWSER TOOLS =============== ###
|
43 |
+
|
44 |
+
|
45 |
+
@tool
|
46 |
+
def wiki_search(query: str) -> str:
|
47 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
query: The search query."""
|
51 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
52 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
53 |
+
[
|
54 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
55 |
+
for doc in search_docs
|
56 |
+
]
|
57 |
+
)
|
58 |
+
return {"wiki_results": formatted_search_docs}
|
59 |
+
|
60 |
+
|
61 |
+
@tool
|
62 |
+
def web_search(query: str) -> str:
|
63 |
+
"""Search Tavily for a query and return maximum 3 results.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
query: The search query."""
|
67 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
68 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
69 |
+
[
|
70 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
71 |
+
for doc in search_docs
|
72 |
+
]
|
73 |
+
)
|
74 |
+
return {"web_results": formatted_search_docs}
|
75 |
+
|
76 |
+
|
77 |
+
@tool
|
78 |
+
def arxiv_search(query: str) -> str:
|
79 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
query: The search query."""
|
83 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
84 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
85 |
+
[
|
86 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
87 |
+
for doc in search_docs
|
88 |
+
]
|
89 |
+
)
|
90 |
+
return {"arxiv_results": formatted_search_docs}
|
91 |
+
|
92 |
+
|
93 |
+
### =============== CODE INTERPRETER TOOLS =============== ###
|
94 |
+
|
95 |
+
|
96 |
+
@tool
|
97 |
+
def execute_code_multilang(code: str, language: str = "python") -> str:
|
98 |
+
"""Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
code (str): The source code to execute.
|
102 |
+
language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
|
106 |
+
"""
|
107 |
+
supported_languages = ["python", "bash", "sql", "c", "java"]
|
108 |
+
language = language.lower()
|
109 |
+
|
110 |
+
if language not in supported_languages:
|
111 |
+
return f"β Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
|
112 |
+
|
113 |
+
result = interpreter_instance.execute_code(code, language=language)
|
114 |
+
|
115 |
+
response = []
|
116 |
+
|
117 |
+
if result["status"] == "success":
|
118 |
+
response.append(f"β
Code executed successfully in **{language.upper()}**")
|
119 |
+
|
120 |
+
if result.get("stdout"):
|
121 |
+
response.append(
|
122 |
+
"\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
|
123 |
+
)
|
124 |
+
|
125 |
+
if result.get("stderr"):
|
126 |
+
response.append(
|
127 |
+
"\n**Standard Error (if any):**\n```\n"
|
128 |
+
+ result["stderr"].strip()
|
129 |
+
+ "\n```"
|
130 |
+
)
|
131 |
+
|
132 |
+
if result.get("result") is not None:
|
133 |
+
response.append(
|
134 |
+
"\n**Execution Result:**\n```\n"
|
135 |
+
+ str(result["result"]).strip()
|
136 |
+
+ "\n```"
|
137 |
+
)
|
138 |
+
|
139 |
+
if result.get("dataframes"):
|
140 |
+
for df_info in result["dataframes"]:
|
141 |
+
response.append(
|
142 |
+
f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
|
143 |
+
)
|
144 |
+
df_preview = pd.DataFrame(df_info["head"])
|
145 |
+
response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
|
146 |
+
|
147 |
+
if result.get("plots"):
|
148 |
+
response.append(
|
149 |
+
f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
|
150 |
+
)
|
151 |
+
|
152 |
+
else:
|
153 |
+
response.append(f"β Code execution failed in **{language.upper()}**")
|
154 |
+
if result.get("stderr"):
|
155 |
+
response.append(
|
156 |
+
"\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
|
157 |
+
)
|
158 |
+
|
159 |
+
return "\n".join(response)
|
160 |
+
|
161 |
+
|
162 |
+
### =============== MATHEMATICAL TOOLS =============== ###
|
163 |
+
|
164 |
+
|
165 |
+
@tool
|
166 |
+
def multiply(a: float, b: float) -> float:
|
167 |
+
"""
|
168 |
+
Multiplies two numbers.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
a (float): the first number
|
172 |
+
b (float): the second number
|
173 |
+
"""
|
174 |
+
return a * b
|
175 |
+
|
176 |
+
|
177 |
+
@tool
|
178 |
+
def add(a: float, b: float) -> float:
|
179 |
+
"""
|
180 |
+
Adds two numbers.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
a (float): the first number
|
184 |
+
b (float): the second number
|
185 |
+
"""
|
186 |
+
return a + b
|
187 |
+
|
188 |
+
|
189 |
+
@tool
|
190 |
+
def subtract(a: float, b: float) -> int:
|
191 |
+
"""
|
192 |
+
Subtracts two numbers.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
a (float): the first number
|
196 |
+
b (float): the second number
|
197 |
+
"""
|
198 |
+
return a - b
|
199 |
+
|
200 |
+
|
201 |
+
@tool
|
202 |
+
def divide(a: float, b: float) -> float:
|
203 |
+
"""
|
204 |
+
Divides two numbers.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
a (float): the first float number
|
208 |
+
b (float): the second float number
|
209 |
+
"""
|
210 |
+
if b == 0:
|
211 |
+
raise ValueError("Cannot divided by zero.")
|
212 |
+
return a / b
|
213 |
+
|
214 |
+
|
215 |
+
@tool
|
216 |
+
def modulus(a: int, b: int) -> int:
|
217 |
+
"""
|
218 |
+
Get the modulus of two numbers.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
a (int): the first number
|
222 |
+
b (int): the second number
|
223 |
+
"""
|
224 |
+
return a % b
|
225 |
+
|
226 |
+
|
227 |
+
@tool
|
228 |
+
def power(a: float, b: float) -> float:
|
229 |
+
"""
|
230 |
+
Get the power of two numbers.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
a (float): the first number
|
234 |
+
b (float): the second number
|
235 |
+
"""
|
236 |
+
return a**b
|
237 |
+
|
238 |
+
|
239 |
+
@tool
|
240 |
+
def square_root(a: float) -> float | complex:
|
241 |
+
"""
|
242 |
+
Get the square root of a number.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
a (float): the number to get the square root of
|
246 |
+
"""
|
247 |
+
if a >= 0:
|
248 |
+
return a**0.5
|
249 |
+
return cmath.sqrt(a)
|
250 |
+
|
251 |
+
|
252 |
+
### =============== DOCUMENT PROCESSING TOOLS =============== ###
|
253 |
+
|
254 |
+
|
255 |
+
@tool
|
256 |
+
def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
|
257 |
+
"""
|
258 |
+
Save content to a file and return the path.
|
259 |
+
|
260 |
+
Args:
|
261 |
+
content (str): the content to save to the file
|
262 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
263 |
+
"""
|
264 |
+
temp_dir = tempfile.gettempdir()
|
265 |
+
if filename is None:
|
266 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
|
267 |
+
filepath = temp_file.name
|
268 |
+
else:
|
269 |
+
filepath = os.path.join(temp_dir, filename)
|
270 |
+
|
271 |
+
with open(filepath, "w") as f:
|
272 |
+
f.write(content)
|
273 |
+
|
274 |
+
return f"File saved to {filepath}. You can read this file to process its contents."
|
275 |
+
|
276 |
+
|
277 |
+
@tool
|
278 |
+
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
|
279 |
+
"""
|
280 |
+
Download a file from a URL and save it to a temporary location.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
url (str): the URL of the file to download.
|
284 |
+
filename (str, optional): the name of the file. If not provided, a random name file will be created.
|
285 |
+
"""
|
286 |
+
try:
|
287 |
+
# Parse URL to get filename if not provided
|
288 |
+
if not filename:
|
289 |
+
path = urlparse(url).path
|
290 |
+
filename = os.path.basename(path)
|
291 |
+
if not filename:
|
292 |
+
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
|
293 |
+
|
294 |
+
# Create temporary file
|
295 |
+
temp_dir = tempfile.gettempdir()
|
296 |
+
filepath = os.path.join(temp_dir, filename)
|
297 |
+
|
298 |
+
# Download the file
|
299 |
+
response = requests.get(url, stream=True)
|
300 |
+
response.raise_for_status()
|
301 |
+
|
302 |
+
# Save the file
|
303 |
+
with open(filepath, "wb") as f:
|
304 |
+
for chunk in response.iter_content(chunk_size=8192):
|
305 |
+
f.write(chunk)
|
306 |
+
|
307 |
+
return f"File downloaded to {filepath}. You can read this file to process its contents."
|
308 |
+
except Exception as e:
|
309 |
+
return f"Error downloading file: {str(e)}"
|
310 |
+
|
311 |
+
|
312 |
+
@tool
|
313 |
+
def extract_text_from_image(image_path: str) -> str:
|
314 |
+
"""
|
315 |
+
Extract text from an image using OCR library pytesseract (if available).
|
316 |
+
|
317 |
+
Args:
|
318 |
+
image_path (str): the path to the image file.
|
319 |
+
"""
|
320 |
+
try:
|
321 |
+
# Open the image
|
322 |
+
image = Image.open(image_path)
|
323 |
+
|
324 |
+
# Extract text from the image
|
325 |
+
text = pytesseract.image_to_string(image)
|
326 |
+
|
327 |
+
return f"Extracted text from image:\n\n{text}"
|
328 |
+
except Exception as e:
|
329 |
+
return f"Error extracting text from image: {str(e)}"
|
330 |
+
|
331 |
+
|
332 |
+
@tool
|
333 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
334 |
+
"""
|
335 |
+
Analyze a CSV file using pandas and answer a question about it.
|
336 |
+
|
337 |
+
Args:
|
338 |
+
file_path (str): the path to the CSV file.
|
339 |
+
query (str): Question about the data
|
340 |
+
"""
|
341 |
+
try:
|
342 |
+
# Read the CSV file
|
343 |
+
df = pd.read_csv(file_path)
|
344 |
+
|
345 |
+
# Run various analyses based on the query
|
346 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
347 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
348 |
+
|
349 |
+
# Add summary statistics
|
350 |
+
result += "Summary statistics:\n"
|
351 |
+
result += str(df.describe())
|
352 |
+
|
353 |
+
return result
|
354 |
+
|
355 |
+
except Exception as e:
|
356 |
+
return f"Error analyzing CSV file: {str(e)}"
|
357 |
+
|
358 |
+
|
359 |
+
@tool
|
360 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
361 |
+
"""
|
362 |
+
Analyze an Excel file using pandas and answer a question about it.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
file_path (str): the path to the Excel file.
|
366 |
+
query (str): Question about the data
|
367 |
+
"""
|
368 |
+
try:
|
369 |
+
# Read the Excel file
|
370 |
+
df = pd.read_excel(file_path)
|
371 |
+
|
372 |
+
# Run various analyses based on the query
|
373 |
+
result = (
|
374 |
+
f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
375 |
+
)
|
376 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
377 |
+
|
378 |
+
# Add summary statistics
|
379 |
+
result += "Summary statistics:\n"
|
380 |
+
result += str(df.describe())
|
381 |
+
|
382 |
+
return result
|
383 |
+
|
384 |
+
except Exception as e:
|
385 |
+
return f"Error analyzing Excel file: {str(e)}"
|
386 |
+
|
387 |
+
|
388 |
+
### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
|
389 |
+
|
390 |
+
|
391 |
+
@tool
|
392 |
+
def analyze_image(image_base64: str) -> Dict[str, Any]:
|
393 |
+
"""
|
394 |
+
Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
|
395 |
+
|
396 |
+
Args:
|
397 |
+
image_base64 (str): Base64 encoded image string
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
Dictionary with analysis result
|
401 |
+
"""
|
402 |
+
try:
|
403 |
+
img = decode_image(image_base64)
|
404 |
+
width, height = img.size
|
405 |
+
mode = img.mode
|
406 |
+
|
407 |
+
if mode in ("RGB", "RGBA"):
|
408 |
+
arr = np.array(img)
|
409 |
+
avg_colors = arr.mean(axis=(0, 1))
|
410 |
+
dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
|
411 |
+
brightness = avg_colors.mean()
|
412 |
+
color_analysis = {
|
413 |
+
"average_rgb": avg_colors.tolist(),
|
414 |
+
"brightness": brightness,
|
415 |
+
"dominant_color": dominant,
|
416 |
+
}
|
417 |
+
else:
|
418 |
+
color_analysis = {"note": f"No color analysis for mode {mode}"}
|
419 |
+
|
420 |
+
thumbnail = img.copy()
|
421 |
+
thumbnail.thumbnail((100, 100))
|
422 |
+
thumb_path = save_image(thumbnail, "thumbnails")
|
423 |
+
thumbnail_base64 = encode_image(thumb_path)
|
424 |
+
|
425 |
+
return {
|
426 |
+
"dimensions": (width, height),
|
427 |
+
"mode": mode,
|
428 |
+
"color_analysis": color_analysis,
|
429 |
+
"thumbnail": thumbnail_base64,
|
430 |
+
}
|
431 |
+
except Exception as e:
|
432 |
+
return {"error": str(e)}
|
433 |
+
|
434 |
+
|
435 |
+
@tool
|
436 |
+
def transform_image(
|
437 |
+
image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
|
438 |
+
) -> Dict[str, Any]:
|
439 |
+
"""
|
440 |
+
Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
image_base64 (str): Base64 encoded input image
|
444 |
+
operation (str): Transformation operation
|
445 |
+
params (Dict[str, Any], optional): Parameters for the operation
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
Dictionary with transformed image (base64)
|
449 |
+
"""
|
450 |
+
try:
|
451 |
+
img = decode_image(image_base64)
|
452 |
+
params = params or {}
|
453 |
+
|
454 |
+
if operation == "resize":
|
455 |
+
img = img.resize(
|
456 |
+
(
|
457 |
+
params.get("width", img.width // 2),
|
458 |
+
params.get("height", img.height // 2),
|
459 |
+
)
|
460 |
+
)
|
461 |
+
elif operation == "rotate":
|
462 |
+
img = img.rotate(params.get("angle", 90), expand=True)
|
463 |
+
elif operation == "crop":
|
464 |
+
img = img.crop(
|
465 |
+
(
|
466 |
+
params.get("left", 0),
|
467 |
+
params.get("top", 0),
|
468 |
+
params.get("right", img.width),
|
469 |
+
params.get("bottom", img.height),
|
470 |
+
)
|
471 |
+
)
|
472 |
+
elif operation == "flip":
|
473 |
+
if params.get("direction", "horizontal") == "horizontal":
|
474 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
475 |
+
else:
|
476 |
+
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
477 |
+
elif operation == "adjust_brightness":
|
478 |
+
img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
|
479 |
+
elif operation == "adjust_contrast":
|
480 |
+
img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
|
481 |
+
elif operation == "blur":
|
482 |
+
img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
|
483 |
+
elif operation == "sharpen":
|
484 |
+
img = img.filter(ImageFilter.SHARPEN)
|
485 |
+
elif operation == "grayscale":
|
486 |
+
img = img.convert("L")
|
487 |
+
else:
|
488 |
+
return {"error": f"Unknown operation: {operation}"}
|
489 |
+
|
490 |
+
result_path = save_image(img)
|
491 |
+
result_base64 = encode_image(result_path)
|
492 |
+
return {"transformed_image": result_base64}
|
493 |
+
|
494 |
+
except Exception as e:
|
495 |
+
return {"error": str(e)}
|
496 |
+
|
497 |
+
|
498 |
+
@tool
|
499 |
+
def draw_on_image(
|
500 |
+
image_base64: str, drawing_type: str, params: Dict[str, Any]
|
501 |
+
) -> Dict[str, Any]:
|
502 |
+
"""
|
503 |
+
Draw shapes (rectangle, circle, line) or text onto an image.
|
504 |
+
|
505 |
+
Args:
|
506 |
+
image_base64 (str): Base64 encoded input image
|
507 |
+
drawing_type (str): Drawing type
|
508 |
+
params (Dict[str, Any]): Drawing parameters
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
Dictionary with result image (base64)
|
512 |
+
"""
|
513 |
+
try:
|
514 |
+
img = decode_image(image_base64)
|
515 |
+
draw = ImageDraw.Draw(img)
|
516 |
+
color = params.get("color", "red")
|
517 |
+
|
518 |
+
if drawing_type == "rectangle":
|
519 |
+
draw.rectangle(
|
520 |
+
[params["left"], params["top"], params["right"], params["bottom"]],
|
521 |
+
outline=color,
|
522 |
+
width=params.get("width", 2),
|
523 |
+
)
|
524 |
+
elif drawing_type == "circle":
|
525 |
+
x, y, r = params["x"], params["y"], params["radius"]
|
526 |
+
draw.ellipse(
|
527 |
+
(x - r, y - r, x + r, y + r),
|
528 |
+
outline=color,
|
529 |
+
width=params.get("width", 2),
|
530 |
+
)
|
531 |
+
elif drawing_type == "line":
|
532 |
+
draw.line(
|
533 |
+
(
|
534 |
+
params["start_x"],
|
535 |
+
params["start_y"],
|
536 |
+
params["end_x"],
|
537 |
+
params["end_y"],
|
538 |
+
),
|
539 |
+
fill=color,
|
540 |
+
width=params.get("width", 2),
|
541 |
+
)
|
542 |
+
elif drawing_type == "text":
|
543 |
+
font_size = params.get("font_size", 20)
|
544 |
+
try:
|
545 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
546 |
+
except IOError:
|
547 |
+
font = ImageFont.load_default()
|
548 |
+
draw.text(
|
549 |
+
(params["x"], params["y"]),
|
550 |
+
params.get("text", "Text"),
|
551 |
+
fill=color,
|
552 |
+
font=font,
|
553 |
+
)
|
554 |
+
else:
|
555 |
+
return {"error": f"Unknown drawing type: {drawing_type}"}
|
556 |
+
|
557 |
+
result_path = save_image(img)
|
558 |
+
result_base64 = encode_image(result_path)
|
559 |
+
return {"result_image": result_base64}
|
560 |
+
|
561 |
+
except Exception as e:
|
562 |
+
return {"error": str(e)}
|
563 |
+
|
564 |
+
|
565 |
+
@tool
|
566 |
+
def generate_simple_image(
|
567 |
+
image_type: str,
|
568 |
+
width: int = 500,
|
569 |
+
height: int = 500,
|
570 |
+
params: Optional[Dict[str, Any]] = None,
|
571 |
+
) -> Dict[str, Any]:
|
572 |
+
"""
|
573 |
+
Generate a simple image (gradient, noise, pattern, chart).
|
574 |
+
|
575 |
+
Args:
|
576 |
+
image_type (str): Type of image
|
577 |
+
width (int), height (int)
|
578 |
+
params (Dict[str, Any], optional): Specific parameters
|
579 |
+
|
580 |
+
Returns:
|
581 |
+
Dictionary with generated image (base64)
|
582 |
+
"""
|
583 |
+
try:
|
584 |
+
params = params or {}
|
585 |
+
|
586 |
+
if image_type == "gradient":
|
587 |
+
direction = params.get("direction", "horizontal")
|
588 |
+
start_color = params.get("start_color", (255, 0, 0))
|
589 |
+
end_color = params.get("end_color", (0, 0, 255))
|
590 |
+
|
591 |
+
img = Image.new("RGB", (width, height))
|
592 |
+
draw = ImageDraw.Draw(img)
|
593 |
+
|
594 |
+
if direction == "horizontal":
|
595 |
+
for x in range(width):
|
596 |
+
r = int(
|
597 |
+
start_color[0] + (end_color[0] - start_color[0]) * x / width
|
598 |
+
)
|
599 |
+
g = int(
|
600 |
+
start_color[1] + (end_color[1] - start_color[1]) * x / width
|
601 |
+
)
|
602 |
+
b = int(
|
603 |
+
start_color[2] + (end_color[2] - start_color[2]) * x / width
|
604 |
+
)
|
605 |
+
draw.line([(x, 0), (x, height)], fill=(r, g, b))
|
606 |
+
else:
|
607 |
+
for y in range(height):
|
608 |
+
r = int(
|
609 |
+
start_color[0] + (end_color[0] - start_color[0]) * y / height
|
610 |
+
)
|
611 |
+
g = int(
|
612 |
+
start_color[1] + (end_color[1] - start_color[1]) * y / height
|
613 |
+
)
|
614 |
+
b = int(
|
615 |
+
start_color[2] + (end_color[2] - start_color[2]) * y / height
|
616 |
+
)
|
617 |
+
draw.line([(0, y), (width, y)], fill=(r, g, b))
|
618 |
+
|
619 |
+
elif image_type == "noise":
|
620 |
+
noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
|
621 |
+
img = Image.fromarray(noise_array, "RGB")
|
622 |
+
|
623 |
+
else:
|
624 |
+
return {"error": f"Unsupported image_type {image_type}"}
|
625 |
+
|
626 |
+
result_path = save_image(img)
|
627 |
+
result_base64 = encode_image(result_path)
|
628 |
+
return {"generated_image": result_base64}
|
629 |
+
|
630 |
+
except Exception as e:
|
631 |
+
return {"error": str(e)}
|
632 |
+
|
633 |
+
|
634 |
+
@tool
|
635 |
+
def combine_images(
|
636 |
+
images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
|
637 |
+
) -> Dict[str, Any]:
|
638 |
+
"""
|
639 |
+
Combine multiple images (collage, stack, blend).
|
640 |
+
|
641 |
+
Args:
|
642 |
+
images_base64 (List[str]): List of base64 images
|
643 |
+
operation (str): Combination type
|
644 |
+
params (Dict[str, Any], optional)
|
645 |
+
|
646 |
+
Returns:
|
647 |
+
Dictionary with combined image (base64)
|
648 |
+
"""
|
649 |
+
try:
|
650 |
+
images = [decode_image(b64) for b64 in images_base64]
|
651 |
+
params = params or {}
|
652 |
+
|
653 |
+
if operation == "stack":
|
654 |
+
direction = params.get("direction", "horizontal")
|
655 |
+
if direction == "horizontal":
|
656 |
+
total_width = sum(img.width for img in images)
|
657 |
+
max_height = max(img.height for img in images)
|
658 |
+
new_img = Image.new("RGB", (total_width, max_height))
|
659 |
+
x = 0
|
660 |
+
for img in images:
|
661 |
+
new_img.paste(img, (x, 0))
|
662 |
+
x += img.width
|
663 |
+
else:
|
664 |
+
max_width = max(img.width for img in images)
|
665 |
+
total_height = sum(img.height for img in images)
|
666 |
+
new_img = Image.new("RGB", (max_width, total_height))
|
667 |
+
y = 0
|
668 |
+
for img in images:
|
669 |
+
new_img.paste(img, (0, y))
|
670 |
+
y += img.height
|
671 |
+
else:
|
672 |
+
return {"error": f"Unsupported combination operation {operation}"}
|
673 |
+
|
674 |
+
result_path = save_image(new_img)
|
675 |
+
result_base64 = encode_image(result_path)
|
676 |
+
return {"combined_image": result_base64}
|
677 |
+
|
678 |
+
except Exception as e:
|
679 |
+
return {"error": str(e)}
|
680 |
+
|
681 |
+
|
682 |
+
# load the system prompt from the file
|
683 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
684 |
+
system_prompt = f.read()
|
685 |
+
print(system_prompt)
|
686 |
+
|
687 |
+
# System message
|
688 |
+
sys_msg = SystemMessage(content=system_prompt)
|
689 |
+
|
690 |
+
# build a retriever
|
691 |
+
embeddings = HuggingFaceEmbeddings(
|
692 |
+
model_name="sentence-transformers/all-mpnet-base-v2"
|
693 |
+
) # dim=768
|
694 |
+
supabase: Client = create_client(
|
695 |
+
os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
|
696 |
+
)
|
697 |
+
vector_store = SupabaseVectorStore(
|
698 |
+
client=supabase,
|
699 |
+
embedding=embeddings,
|
700 |
+
table_name="documents2",
|
701 |
+
query_name="match_documents_2",
|
702 |
+
)
|
703 |
+
create_retriever_tool = create_retriever_tool(
|
704 |
+
retriever=vector_store.as_retriever(),
|
705 |
+
name="Question Search",
|
706 |
+
description="A tool to retrieve similar questions from a vector store.",
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
+
tools = [
|
711 |
+
web_search,
|
712 |
+
wiki_search,
|
713 |
+
arxiv_search,
|
714 |
+
multiply,
|
715 |
+
add,
|
716 |
+
subtract,
|
717 |
+
divide,
|
718 |
+
modulus,
|
719 |
+
power,
|
720 |
+
square_root,
|
721 |
+
save_and_read_file,
|
722 |
+
download_file_from_url,
|
723 |
+
extract_text_from_image,
|
724 |
+
analyze_csv_file,
|
725 |
+
analyze_excel_file,
|
726 |
+
execute_code_multilang,
|
727 |
+
analyze_image,
|
728 |
+
transform_image,
|
729 |
+
draw_on_image,
|
730 |
+
generate_simple_image,
|
731 |
+
combine_images,
|
732 |
+
]
|
733 |
+
|
734 |
+
|
735 |
+
# Build graph function
|
736 |
+
def build_graph(provider: str = "groq"):
|
737 |
+
"""Build the graph"""
|
738 |
+
# Load environment variables from .env file
|
739 |
+
if provider == "groq":
|
740 |
+
# Groq https://console.groq.com/docs/models
|
741 |
+
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
742 |
+
elif provider == "huggingface":
|
743 |
+
# TODO: Add huggingface endpoint
|
744 |
+
llm = ChatHuggingFace(
|
745 |
+
llm=HuggingFaceEndpoint(
|
746 |
+
repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
747 |
+
task="text-generation", # for chatβstyle use βtext-generationβ
|
748 |
+
max_new_tokens=1024,
|
749 |
+
do_sample=False,
|
750 |
+
repetition_penalty=1.03,
|
751 |
+
temperature=0,
|
752 |
+
),
|
753 |
+
verbose=True,
|
754 |
+
)
|
755 |
+
else:
|
756 |
+
raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
|
757 |
+
# Bind tools to LLM
|
758 |
+
llm_with_tools = llm.bind_tools(tools)
|
759 |
+
|
760 |
+
# Node
|
761 |
+
def assistant(state: MessagesState):
|
762 |
+
"""Assistant node"""
|
763 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
764 |
+
|
765 |
+
def retriever(state: MessagesState):
|
766 |
+
"""Retriever node"""
|
767 |
+
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
768 |
+
|
769 |
+
if similar_question: # Check if the list is not empty
|
770 |
+
example_msg = HumanMessage(
|
771 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
772 |
+
)
|
773 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
774 |
+
else:
|
775 |
+
# Handle the case when no similar questions are found
|
776 |
+
return {"messages": [sys_msg] + state["messages"]}
|
777 |
+
|
778 |
+
builder = StateGraph(MessagesState)
|
779 |
+
builder.add_node("retriever", retriever)
|
780 |
+
builder.add_node("assistant", assistant)
|
781 |
+
builder.add_node("tools", ToolNode(tools))
|
782 |
+
builder.add_edge(START, "retriever")
|
783 |
+
builder.add_edge("retriever", "assistant")
|
784 |
+
builder.add_conditional_edges(
|
785 |
+
"assistant",
|
786 |
+
tools_condition,
|
787 |
+
)
|
788 |
+
builder.add_edge("tools", "assistant")
|
789 |
+
|
790 |
+
# Compile graph
|
791 |
+
return builder.compile()
|
792 |
+
|
793 |
+
|
794 |
+
# test
|
795 |
+
if __name__ == "__main__":
|
796 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
797 |
+
graph = build_graph(provider="groq")
|
798 |
+
messages = [HumanMessage(content=question)]
|
799 |
+
messages = graph.invoke({"messages": messages})
|
800 |
+
for m in messages["messages"]:
|
801 |
+
m.pretty_print()
|
code_interpreter.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import sys
|
4 |
+
import uuid
|
5 |
+
import base64
|
6 |
+
import traceback
|
7 |
+
import contextlib
|
8 |
+
import tempfile
|
9 |
+
import subprocess
|
10 |
+
import sqlite3
|
11 |
+
from typing import Dict, List, Any, Optional, Union
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
class CodeInterpreter:
|
18 |
+
def __init__(self, allowed_modules=None, max_execution_time=30, working_directory=None):
|
19 |
+
"""Initialize the code interpreter with safety measures."""
|
20 |
+
self.allowed_modules = allowed_modules or [
|
21 |
+
"numpy", "pandas", "matplotlib", "scipy", "sklearn",
|
22 |
+
"math", "random", "statistics", "datetime", "collections",
|
23 |
+
"itertools", "functools", "operator", "re", "json",
|
24 |
+
"sympy", "networkx", "nltk", "PIL", "pytesseract",
|
25 |
+
"cmath", "uuid", "tempfile", "requests", "urllib"
|
26 |
+
]
|
27 |
+
self.max_execution_time = max_execution_time
|
28 |
+
self.working_directory = working_directory or os.path.join(os.getcwd())
|
29 |
+
if not os.path.exists(self.working_directory):
|
30 |
+
os.makedirs(self.working_directory)
|
31 |
+
|
32 |
+
self.globals = {
|
33 |
+
"__builtins__": __builtins__,
|
34 |
+
"np": np,
|
35 |
+
"pd": pd,
|
36 |
+
"plt": plt,
|
37 |
+
"Image": Image,
|
38 |
+
}
|
39 |
+
self.temp_sqlite_db = os.path.join(tempfile.gettempdir(), "code_exec.db")
|
40 |
+
|
41 |
+
def execute_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
42 |
+
"""Execute the provided code in the selected programming language."""
|
43 |
+
language = language.lower()
|
44 |
+
execution_id = str(uuid.uuid4())
|
45 |
+
|
46 |
+
result = {
|
47 |
+
"execution_id": execution_id,
|
48 |
+
"status": "error",
|
49 |
+
"stdout": "",
|
50 |
+
"stderr": "",
|
51 |
+
"result": None,
|
52 |
+
"plots": [],
|
53 |
+
"dataframes": []
|
54 |
+
}
|
55 |
+
|
56 |
+
try:
|
57 |
+
if language == "python":
|
58 |
+
return self._execute_python(code, execution_id)
|
59 |
+
elif language == "bash":
|
60 |
+
return self._execute_bash(code, execution_id)
|
61 |
+
elif language == "sql":
|
62 |
+
return self._execute_sql(code, execution_id)
|
63 |
+
elif language == "c":
|
64 |
+
return self._execute_c(code, execution_id)
|
65 |
+
elif language == "java":
|
66 |
+
return self._execute_java(code, execution_id)
|
67 |
+
else:
|
68 |
+
result["stderr"] = f"Unsupported language: {language}"
|
69 |
+
except Exception as e:
|
70 |
+
result["stderr"] = str(e)
|
71 |
+
|
72 |
+
return result
|
73 |
+
|
74 |
+
def _execute_python(self, code: str, execution_id: str) -> dict:
|
75 |
+
output_buffer = io.StringIO()
|
76 |
+
error_buffer = io.StringIO()
|
77 |
+
result = {
|
78 |
+
"execution_id": execution_id,
|
79 |
+
"status": "error",
|
80 |
+
"stdout": "",
|
81 |
+
"stderr": "",
|
82 |
+
"result": None,
|
83 |
+
"plots": [],
|
84 |
+
"dataframes": []
|
85 |
+
}
|
86 |
+
|
87 |
+
try:
|
88 |
+
exec_dir = os.path.join(self.working_directory, execution_id)
|
89 |
+
os.makedirs(exec_dir, exist_ok=True)
|
90 |
+
plt.switch_backend('Agg')
|
91 |
+
|
92 |
+
with contextlib.redirect_stdout(output_buffer), contextlib.redirect_stderr(error_buffer):
|
93 |
+
exec_result = exec(code, self.globals)
|
94 |
+
|
95 |
+
if plt.get_fignums():
|
96 |
+
for i, fig_num in enumerate(plt.get_fignums()):
|
97 |
+
fig = plt.figure(fig_num)
|
98 |
+
img_path = os.path.join(exec_dir, f"plot_{i}.png")
|
99 |
+
fig.savefig(img_path)
|
100 |
+
with open(img_path, "rb") as img_file:
|
101 |
+
img_data = base64.b64encode(img_file.read()).decode('utf-8')
|
102 |
+
result["plots"].append({
|
103 |
+
"figure_number": fig_num,
|
104 |
+
"data": img_data
|
105 |
+
})
|
106 |
+
|
107 |
+
for var_name, var_value in self.globals.items():
|
108 |
+
if isinstance(var_value, pd.DataFrame) and len(var_value) > 0:
|
109 |
+
result["dataframes"].append({
|
110 |
+
"name": var_name,
|
111 |
+
"head": var_value.head().to_dict(),
|
112 |
+
"shape": var_value.shape,
|
113 |
+
"dtypes": str(var_value.dtypes)
|
114 |
+
})
|
115 |
+
|
116 |
+
result["status"] = "success"
|
117 |
+
result["stdout"] = output_buffer.getvalue()
|
118 |
+
result["result"] = exec_result
|
119 |
+
|
120 |
+
except Exception as e:
|
121 |
+
result["status"] = "error"
|
122 |
+
result["stderr"] = f"{error_buffer.getvalue()}\n{traceback.format_exc()}"
|
123 |
+
|
124 |
+
return result
|
125 |
+
|
126 |
+
def _execute_bash(self, code: str, execution_id: str) -> dict:
|
127 |
+
try:
|
128 |
+
completed = subprocess.run(
|
129 |
+
code, shell=True, capture_output=True, text=True, timeout=self.max_execution_time
|
130 |
+
)
|
131 |
+
return {
|
132 |
+
"execution_id": execution_id,
|
133 |
+
"status": "success" if completed.returncode == 0 else "error",
|
134 |
+
"stdout": completed.stdout,
|
135 |
+
"stderr": completed.stderr,
|
136 |
+
"result": None,
|
137 |
+
"plots": [],
|
138 |
+
"dataframes": []
|
139 |
+
}
|
140 |
+
except subprocess.TimeoutExpired:
|
141 |
+
return {
|
142 |
+
"execution_id": execution_id,
|
143 |
+
"status": "error",
|
144 |
+
"stdout": "",
|
145 |
+
"stderr": "Execution timed out.",
|
146 |
+
"result": None,
|
147 |
+
"plots": [],
|
148 |
+
"dataframes": []
|
149 |
+
}
|
150 |
+
|
151 |
+
def _execute_sql(self, code: str, execution_id: str) -> dict:
|
152 |
+
result = {
|
153 |
+
"execution_id": execution_id,
|
154 |
+
"status": "error",
|
155 |
+
"stdout": "",
|
156 |
+
"stderr": "",
|
157 |
+
"result": None,
|
158 |
+
"plots": [],
|
159 |
+
"dataframes": []
|
160 |
+
}
|
161 |
+
try:
|
162 |
+
conn = sqlite3.connect(self.temp_sqlite_db)
|
163 |
+
cur = conn.cursor()
|
164 |
+
cur.execute(code)
|
165 |
+
if code.strip().lower().startswith("select"):
|
166 |
+
columns = [description[0] for description in cur.description]
|
167 |
+
rows = cur.fetchall()
|
168 |
+
df = pd.DataFrame(rows, columns=columns)
|
169 |
+
result["dataframes"].append({
|
170 |
+
"name": "query_result",
|
171 |
+
"head": df.head().to_dict(),
|
172 |
+
"shape": df.shape,
|
173 |
+
"dtypes": str(df.dtypes)
|
174 |
+
})
|
175 |
+
else:
|
176 |
+
conn.commit()
|
177 |
+
|
178 |
+
result["status"] = "success"
|
179 |
+
result["stdout"] = "Query executed successfully."
|
180 |
+
|
181 |
+
except Exception as e:
|
182 |
+
result["stderr"] = str(e)
|
183 |
+
finally:
|
184 |
+
conn.close()
|
185 |
+
|
186 |
+
return result
|
187 |
+
|
188 |
+
def _execute_c(self, code: str, execution_id: str) -> dict:
|
189 |
+
temp_dir = tempfile.mkdtemp()
|
190 |
+
source_path = os.path.join(temp_dir, "program.c")
|
191 |
+
binary_path = os.path.join(temp_dir, "program")
|
192 |
+
|
193 |
+
try:
|
194 |
+
with open(source_path, "w") as f:
|
195 |
+
f.write(code)
|
196 |
+
|
197 |
+
compile_proc = subprocess.run(
|
198 |
+
["gcc", source_path, "-o", binary_path],
|
199 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
200 |
+
)
|
201 |
+
if compile_proc.returncode != 0:
|
202 |
+
return {
|
203 |
+
"execution_id": execution_id,
|
204 |
+
"status": "error",
|
205 |
+
"stdout": compile_proc.stdout,
|
206 |
+
"stderr": compile_proc.stderr,
|
207 |
+
"result": None,
|
208 |
+
"plots": [],
|
209 |
+
"dataframes": []
|
210 |
+
}
|
211 |
+
|
212 |
+
run_proc = subprocess.run(
|
213 |
+
[binary_path],
|
214 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
215 |
+
)
|
216 |
+
return {
|
217 |
+
"execution_id": execution_id,
|
218 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
219 |
+
"stdout": run_proc.stdout,
|
220 |
+
"stderr": run_proc.stderr,
|
221 |
+
"result": None,
|
222 |
+
"plots": [],
|
223 |
+
"dataframes": []
|
224 |
+
}
|
225 |
+
except Exception as e:
|
226 |
+
return {
|
227 |
+
"execution_id": execution_id,
|
228 |
+
"status": "error",
|
229 |
+
"stdout": "",
|
230 |
+
"stderr": str(e),
|
231 |
+
"result": None,
|
232 |
+
"plots": [],
|
233 |
+
"dataframes": []
|
234 |
+
}
|
235 |
+
|
236 |
+
def _execute_java(self, code: str, execution_id: str) -> dict:
|
237 |
+
temp_dir = tempfile.mkdtemp()
|
238 |
+
source_path = os.path.join(temp_dir, "Main.java")
|
239 |
+
|
240 |
+
try:
|
241 |
+
with open(source_path, "w") as f:
|
242 |
+
f.write(code)
|
243 |
+
|
244 |
+
compile_proc = subprocess.run(
|
245 |
+
["javac", source_path],
|
246 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
247 |
+
)
|
248 |
+
if compile_proc.returncode != 0:
|
249 |
+
return {
|
250 |
+
"execution_id": execution_id,
|
251 |
+
"status": "error",
|
252 |
+
"stdout": compile_proc.stdout,
|
253 |
+
"stderr": compile_proc.stderr,
|
254 |
+
"result": None,
|
255 |
+
"plots": [],
|
256 |
+
"dataframes": []
|
257 |
+
}
|
258 |
+
|
259 |
+
run_proc = subprocess.run(
|
260 |
+
["java", "-cp", temp_dir, "Main"],
|
261 |
+
capture_output=True, text=True, timeout=self.max_execution_time
|
262 |
+
)
|
263 |
+
return {
|
264 |
+
"execution_id": execution_id,
|
265 |
+
"status": "success" if run_proc.returncode == 0 else "error",
|
266 |
+
"stdout": run_proc.stdout,
|
267 |
+
"stderr": run_proc.stderr,
|
268 |
+
"result": None,
|
269 |
+
"plots": [],
|
270 |
+
"dataframes": []
|
271 |
+
}
|
272 |
+
except Exception as e:
|
273 |
+
return {
|
274 |
+
"execution_id": execution_id,
|
275 |
+
"status": "error",
|
276 |
+
"stdout": "",
|
277 |
+
"stderr": str(e),
|
278 |
+
"result": None,
|
279 |
+
"plots": [],
|
280 |
+
"dataframes": []
|
281 |
+
}
|
explore_metadata.ipynb
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
+
"id": "a600d7fc",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json \n",
|
11 |
+
"with open('metadata.jsonl', 'r') as f: \n",
|
12 |
+
" json_list = list(f)\n",
|
13 |
+
"\n",
|
14 |
+
"json_QA = []\n",
|
15 |
+
"for json_str in json_list: \n",
|
16 |
+
" json_data = json.loads(json_str)\n",
|
17 |
+
" json_QA.append(json_data)"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 10,
|
23 |
+
"id": "fa5d8eb8",
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stdout",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"==================================================\n",
|
31 |
+
"Task ID: d1af70ea-a9a4-421a-b9cc-94b5e02f1788\n",
|
32 |
+
"Question: As of the 2020 census, what was the population difference between the largest county seat and smallest county seat, by land area of the county seat, in Washington state? For population figures, please use the official data from data.census.gov. Please report the integer difference.\n",
|
33 |
+
"Level: 2\n",
|
34 |
+
"Final Answer: 736455\n",
|
35 |
+
"Annotator Metadata: \n",
|
36 |
+
" βββ Steps: \n",
|
37 |
+
" β βββ Step 1: Using a web browser, access a search engine and conduct a search, \"Washington cities by area\"\n",
|
38 |
+
" β βββ Step 2: Navigate to the second search result, https://en.wikipedia.org/wiki/List_of_municipalities_in_Washington\n",
|
39 |
+
" β βββ Step 3: Evaluate the page contents, finding the largest and smallest county seats by land area, Seattle and Cathlamet\n",
|
40 |
+
" β βββ Step 4: Using a web browser, navigate to https://data.census.gov/\n",
|
41 |
+
" β βββ Step 5: Using the website's search area, conduct a search, Seattle, Washington\n",
|
42 |
+
" β βββ Step 6: Record the reported 2020 Decennial Census population of Seattle, Washington, 737,015\n",
|
43 |
+
" β βββ Step 7: Using the website's search area, conduct a search, Cathlamet, Washington\n",
|
44 |
+
" β βββ Step 8: Record the reported 2020 Decennial Census population of Cathlamet, Washington, 560\n",
|
45 |
+
" β βββ Step 9: Using a calculator, find the difference in populations,\n",
|
46 |
+
" β βββ \n",
|
47 |
+
" β βββ 737,015 - 560\n",
|
48 |
+
" β βββ 736,455\n",
|
49 |
+
" β βββ Step 10: Report the correct answer to my user in the requested format, \"736,455\"\n",
|
50 |
+
" βββ Number of steps: 10\n",
|
51 |
+
" βββ How long did this take?: 5 minutes\n",
|
52 |
+
" βββ Tools:\n",
|
53 |
+
" β βββ 1. A web browser\n",
|
54 |
+
" β βββ 2. A search engine\n",
|
55 |
+
" β βββ 3. A calculator\n",
|
56 |
+
" βββ Number of tools: 3\n",
|
57 |
+
"==================================================\n"
|
58 |
+
]
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"source": [
|
62 |
+
"import random\n",
|
63 |
+
"random_samples = random.sample(json_QA, 1)\n",
|
64 |
+
"for sample in random_samples:\n",
|
65 |
+
" print(\"=\" * 50)\n",
|
66 |
+
" print(f\"Task ID: {sample['task_id']}\")\n",
|
67 |
+
" print(f\"Question: {sample['Question']}\")\n",
|
68 |
+
" print(f\"Level: {sample['Level']}\")\n",
|
69 |
+
" print(f\"Final Answer: {sample['Final answer']}\")\n",
|
70 |
+
" print(f\"Annotator Metadata: \")\n",
|
71 |
+
" print(f\" βββ Steps: \")\n",
|
72 |
+
" for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
|
73 |
+
" print(f\" β βββ {step}\")\n",
|
74 |
+
" print(f\" βββ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
|
75 |
+
" print(f\" βββ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
|
76 |
+
" print(f\" βββ Tools:\")\n",
|
77 |
+
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
|
78 |
+
" print(f\" β βββ {tool}\")\n",
|
79 |
+
" print(f\" βββ Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
|
80 |
+
"print(\"=\" * 50)"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 11,
|
86 |
+
"id": "05076516",
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"import os\n",
|
91 |
+
"from dotenv import load_dotenv\n",
|
92 |
+
"from langchain_huggingface import HuggingFaceEmbeddings\n",
|
93 |
+
"from langchain_community.vectorstores import SupabaseVectorStore\n",
|
94 |
+
"from supabase.client import Client, create_client\n",
|
95 |
+
"\n",
|
96 |
+
"\n",
|
97 |
+
"load_dotenv()\n",
|
98 |
+
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
|
99 |
+
"\n",
|
100 |
+
"supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
|
101 |
+
"supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
|
102 |
+
"supabase: Client = create_client(supabase_url, supabase_key)"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 20,
|
108 |
+
"id": "aa1402e3",
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"from langchain.schema import Document\n",
|
113 |
+
"docs = []\n",
|
114 |
+
"cnt = 0 \n",
|
115 |
+
"for sample in json_QA:\n",
|
116 |
+
" content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
|
117 |
+
" doc = {\n",
|
118 |
+
" \"id\" : cnt,\n",
|
119 |
+
" \"content\" : content,\n",
|
120 |
+
" \"metadata\" : {\n",
|
121 |
+
" \"source\" : sample['task_id']\n",
|
122 |
+
" },\n",
|
123 |
+
" \"embedding\" : embeddings.embed_query(content),\n",
|
124 |
+
" }\n",
|
125 |
+
" docs.append(doc)\n",
|
126 |
+
" cnt += 1\n",
|
127 |
+
"\n",
|
128 |
+
"# upload the documents to the vector database\n",
|
129 |
+
"try:\n",
|
130 |
+
" response = (\n",
|
131 |
+
" supabase.table(\"documents2\")\n",
|
132 |
+
" .insert(docs)\n",
|
133 |
+
" .execute()\n",
|
134 |
+
" )\n",
|
135 |
+
"except Exception as exception:\n",
|
136 |
+
" print(\"Error inserting data into Supabase:\", exception)\n",
|
137 |
+
"\n",
|
138 |
+
"# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
|
139 |
+
"# import pandas as pd\n",
|
140 |
+
"# df = pd.DataFrame(docs)\n",
|
141 |
+
"# df.to_csv('supabase_docs.csv',index=False)"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 41,
|
147 |
+
"id": "9aa7eb5e",
|
148 |
+
"metadata": {},
|
149 |
+
"outputs": [],
|
150 |
+
"source": [
|
151 |
+
"# add items to vector database\n",
|
152 |
+
"vector_store = SupabaseVectorStore(\n",
|
153 |
+
" client=supabase,\n",
|
154 |
+
" embedding= embeddings,\n",
|
155 |
+
" table_name=\"documents2\",\n",
|
156 |
+
" query_name=\"match_documents_2\",\n",
|
157 |
+
")\n",
|
158 |
+
"retriever = vector_store.as_retriever()"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 42,
|
164 |
+
"id": "9eecafd1",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
|
169 |
+
"# matched_docs = vector_store.similarity_search(query, k=2)\n",
|
170 |
+
"docs = retriever.invoke(query)"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": 43,
|
176 |
+
"id": "ff917840",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [
|
179 |
+
{
|
180 |
+
"data": {
|
181 |
+
"text/plain": [
|
182 |
+
"Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
"execution_count": 43,
|
186 |
+
"metadata": {},
|
187 |
+
"output_type": "execute_result"
|
188 |
+
}
|
189 |
+
],
|
190 |
+
"source": [
|
191 |
+
"docs[0]"
|
192 |
+
]
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"cell_type": "code",
|
196 |
+
"execution_count": 44,
|
197 |
+
"id": "01c8f337",
|
198 |
+
"metadata": {},
|
199 |
+
"outputs": [
|
200 |
+
{
|
201 |
+
"name": "stdout",
|
202 |
+
"output_type": "stream",
|
203 |
+
"text": [
|
204 |
+
"List of tools used in all samples:\n",
|
205 |
+
"Total number of tools used: 83\n",
|
206 |
+
" βββ web browser: 107\n",
|
207 |
+
" βββ image recognition tools (to identify and parse a figure with three axes): 1\n",
|
208 |
+
" βββ search engine: 101\n",
|
209 |
+
" βββ calculator: 34\n",
|
210 |
+
" βββ unlambda compiler (optional): 1\n",
|
211 |
+
" βββ a web browser.: 2\n",
|
212 |
+
" βββ a search engine.: 2\n",
|
213 |
+
" βββ a calculator.: 1\n",
|
214 |
+
" βββ microsoft excel: 5\n",
|
215 |
+
" βββ google search: 1\n",
|
216 |
+
" βββ ne: 9\n",
|
217 |
+
" βββ pdf access: 7\n",
|
218 |
+
" βββ file handling: 2\n",
|
219 |
+
" βββ python: 3\n",
|
220 |
+
" βββ image recognition tools: 12\n",
|
221 |
+
" βββ jsonld file access: 1\n",
|
222 |
+
" βββ video parsing: 1\n",
|
223 |
+
" βββ python compiler: 1\n",
|
224 |
+
" βββ video recognition tools: 3\n",
|
225 |
+
" βββ pdf viewer: 7\n",
|
226 |
+
" βββ microsoft excel / google sheets: 3\n",
|
227 |
+
" βββ word document access: 1\n",
|
228 |
+
" βββ tool to extract text from images: 1\n",
|
229 |
+
" βββ a word reversal tool / script: 1\n",
|
230 |
+
" βββ counter: 1\n",
|
231 |
+
" βββ excel: 3\n",
|
232 |
+
" βββ image recognition: 5\n",
|
233 |
+
" βββ color recognition: 3\n",
|
234 |
+
" βββ excel file access: 3\n",
|
235 |
+
" βββ xml file access: 1\n",
|
236 |
+
" βββ access to the internet archive, web.archive.org: 1\n",
|
237 |
+
" βββ text processing/diff tool: 1\n",
|
238 |
+
" βββ gif parsing tools: 1\n",
|
239 |
+
" βββ a web browser: 7\n",
|
240 |
+
" βββ a search engine: 7\n",
|
241 |
+
" βββ a speech-to-text tool: 2\n",
|
242 |
+
" βββ code/data analysis tools: 1\n",
|
243 |
+
" βββ audio capability: 2\n",
|
244 |
+
" βββ pdf reader: 1\n",
|
245 |
+
" βββ markdown: 1\n",
|
246 |
+
" βββ a calculator: 5\n",
|
247 |
+
" βββ access to wikipedia: 3\n",
|
248 |
+
" βββ image recognition/ocr: 3\n",
|
249 |
+
" βββ google translate access: 1\n",
|
250 |
+
" βββ ocr: 4\n",
|
251 |
+
" βββ bass note data: 1\n",
|
252 |
+
" βββ text editor: 1\n",
|
253 |
+
" βββ xlsx file access: 1\n",
|
254 |
+
" βββ powerpoint viewer: 1\n",
|
255 |
+
" βββ csv file access: 1\n",
|
256 |
+
" βββ calculator (or use excel): 1\n",
|
257 |
+
" βββ computer algebra system: 1\n",
|
258 |
+
" βββ video processing software: 1\n",
|
259 |
+
" βββ audio processing software: 1\n",
|
260 |
+
" βββ computer vision: 1\n",
|
261 |
+
" βββ google maps: 1\n",
|
262 |
+
" βββ access to excel files: 1\n",
|
263 |
+
" βββ calculator (or ability to count): 1\n",
|
264 |
+
" βββ a file interface: 3\n",
|
265 |
+
" βββ a python ide: 1\n",
|
266 |
+
" βββ spreadsheet editor: 1\n",
|
267 |
+
" βββ tools required: 1\n",
|
268 |
+
" βββ b browser: 1\n",
|
269 |
+
" βββ image recognition and processing tools: 1\n",
|
270 |
+
" βββ computer vision or ocr: 1\n",
|
271 |
+
" βββ c++ compiler: 1\n",
|
272 |
+
" βββ access to google maps: 1\n",
|
273 |
+
" βββ youtube player: 1\n",
|
274 |
+
" βββ natural language processor: 1\n",
|
275 |
+
" βββ graph interaction tools: 1\n",
|
276 |
+
" βββ bablyonian cuniform -> arabic legend: 1\n",
|
277 |
+
" βββ access to youtube: 1\n",
|
278 |
+
" βββ image search tools: 1\n",
|
279 |
+
" βββ calculator or counting function: 1\n",
|
280 |
+
" βββ a speech-to-text audio processing tool: 1\n",
|
281 |
+
" βββ access to academic journal websites: 1\n",
|
282 |
+
" βββ pdf reader/extracter: 1\n",
|
283 |
+
" βββ rubik's cube model: 1\n",
|
284 |
+
" βββ wikipedia: 1\n",
|
285 |
+
" βββ video capability: 1\n",
|
286 |
+
" βββ image processing tools: 1\n",
|
287 |
+
" βββ age recognition software: 1\n",
|
288 |
+
" βββ youtube: 1\n"
|
289 |
+
]
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"source": [
|
293 |
+
"# list of the tools used in all the samples\n",
|
294 |
+
"from collections import Counter, OrderedDict\n",
|
295 |
+
"\n",
|
296 |
+
"tools = []\n",
|
297 |
+
"for sample in json_QA:\n",
|
298 |
+
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
|
299 |
+
" tool = tool[2:].strip().lower()\n",
|
300 |
+
" if tool.startswith(\"(\"):\n",
|
301 |
+
" tool = tool[11:].strip()\n",
|
302 |
+
" tools.append(tool)\n",
|
303 |
+
"tools_counter = OrderedDict(Counter(tools))\n",
|
304 |
+
"print(\"List of tools used in all samples:\")\n",
|
305 |
+
"print(\"Total number of tools used:\", len(tools_counter))\n",
|
306 |
+
"for tool, count in tools_counter.items():\n",
|
307 |
+
" print(f\" βββ {tool}: {count}\")"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"metadata": {
|
312 |
+
"kernelspec": {
|
313 |
+
"display_name": "env",
|
314 |
+
"language": "python",
|
315 |
+
"name": "python3"
|
316 |
+
},
|
317 |
+
"language_info": {
|
318 |
+
"codemirror_mode": {
|
319 |
+
"name": "ipython",
|
320 |
+
"version": 3
|
321 |
+
},
|
322 |
+
"file_extension": ".py",
|
323 |
+
"mimetype": "text/x-python",
|
324 |
+
"name": "python",
|
325 |
+
"nbconvert_exporter": "python",
|
326 |
+
"pygments_lexer": "ipython3",
|
327 |
+
"version": "3.11.9"
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"nbformat": 4,
|
331 |
+
"nbformat_minor": 5
|
332 |
+
}
|
image_processing.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import io
|
3 |
+
import base64
|
4 |
+
import uuid
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Helper functions for image processing
|
8 |
+
def encode_image(image_path: str) -> str:
|
9 |
+
"""Convert an image file to base64 string."""
|
10 |
+
with open(image_path, "rb") as image_file:
|
11 |
+
return base64.b64encode(image_file.read()).decode("utf-8")
|
12 |
+
|
13 |
+
|
14 |
+
def decode_image(base64_string: str) -> Image.Image:
|
15 |
+
"""Convert a base64 string to a PIL Image."""
|
16 |
+
image_data = base64.b64decode(base64_string)
|
17 |
+
return Image.open(io.BytesIO(image_data))
|
18 |
+
|
19 |
+
|
20 |
+
def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
|
21 |
+
"""Save a PIL Image to disk and return the path."""
|
22 |
+
os.makedirs(directory, exist_ok=True)
|
23 |
+
image_id = str(uuid.uuid4())
|
24 |
+
image_path = os.path.join(directory, f"{image_id}.png")
|
25 |
+
image.save(image_path)
|
26 |
+
return image_path
|
metadata.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
langchain-core
|
6 |
+
langchain-google-genai
|
7 |
+
langchain-huggingface
|
8 |
+
langchain-groq
|
9 |
+
langchain-tavily
|
10 |
+
langchain-chroma
|
11 |
+
langgraph
|
12 |
+
huggingface_hub
|
13 |
+
supabase
|
14 |
+
arxiv
|
15 |
+
pymupdf
|
16 |
+
wikipedia
|
17 |
+
pgvector
|
18 |
+
python-dotenv
|
19 |
+
pytesseract
|
20 |
+
matplotlib
|
supabase_docs.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
system_prompt.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are a helpful assistant tasked with answering questions using a set of tools.
|
2 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
3 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
4 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
|
5 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.
|