SreejaS commited on
Commit
0d64a82
Β·
verified Β·
1 Parent(s): 227564c

Upload 8 files

Browse files
agent.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from typing import List, Dict, Any, Optional
4
+ import tempfile
5
+ import re
6
+ import json
7
+ import requests
8
+ from urllib.parse import urlparse
9
+ import pytesseract
10
+ from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
11
+ import cmath
12
+ import pandas as pd
13
+ import uuid
14
+ import numpy as np
15
+ from code_interpreter import CodeInterpreter
16
+
17
+ interpreter_instance = CodeInterpreter()
18
+
19
+ from image_processing import *
20
+
21
+ """Langraph"""
22
+ from langgraph.graph import START, StateGraph, MessagesState
23
+ from langchain_community.tools.tavily_search import TavilySearchResults
24
+ from langchain_community.document_loaders import WikipediaLoader
25
+ from langchain_community.document_loaders import ArxivLoader
26
+ from langgraph.prebuilt import ToolNode, tools_condition
27
+ from langchain_google_genai import ChatGoogleGenerativeAI
28
+ from langchain_groq import ChatGroq
29
+ from langchain_huggingface import (
30
+ ChatHuggingFace,
31
+ HuggingFaceEndpoint,
32
+ HuggingFaceEmbeddings,
33
+ )
34
+ from langchain_community.vectorstores import SupabaseVectorStore
35
+ from langchain_core.messages import SystemMessage, HumanMessage
36
+ from langchain_core.tools import tool
37
+ from langchain.tools.retriever import create_retriever_tool
38
+ from supabase.client import Client, create_client
39
+
40
+ load_dotenv()
41
+
42
+ ### =============== BROWSER TOOLS =============== ###
43
+
44
+
45
+ @tool
46
+ def wiki_search(query: str) -> str:
47
+ """Search Wikipedia for a query and return maximum 2 results.
48
+
49
+ Args:
50
+ query: The search query."""
51
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
52
+ formatted_search_docs = "\n\n---\n\n".join(
53
+ [
54
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
55
+ for doc in search_docs
56
+ ]
57
+ )
58
+ return {"wiki_results": formatted_search_docs}
59
+
60
+
61
+ @tool
62
+ def web_search(query: str) -> str:
63
+ """Search Tavily for a query and return maximum 3 results.
64
+
65
+ Args:
66
+ query: The search query."""
67
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
68
+ formatted_search_docs = "\n\n---\n\n".join(
69
+ [
70
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
71
+ for doc in search_docs
72
+ ]
73
+ )
74
+ return {"web_results": formatted_search_docs}
75
+
76
+
77
+ @tool
78
+ def arxiv_search(query: str) -> str:
79
+ """Search Arxiv for a query and return maximum 3 result.
80
+
81
+ Args:
82
+ query: The search query."""
83
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
84
+ formatted_search_docs = "\n\n---\n\n".join(
85
+ [
86
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
87
+ for doc in search_docs
88
+ ]
89
+ )
90
+ return {"arxiv_results": formatted_search_docs}
91
+
92
+
93
+ ### =============== CODE INTERPRETER TOOLS =============== ###
94
+
95
+
96
+ @tool
97
+ def execute_code_multilang(code: str, language: str = "python") -> str:
98
+ """Execute code in multiple languages (Python, Bash, SQL, C, Java) and return results.
99
+
100
+ Args:
101
+ code (str): The source code to execute.
102
+ language (str): The language of the code. Supported: "python", "bash", "sql", "c", "java".
103
+
104
+ Returns:
105
+ A string summarizing the execution results (stdout, stderr, errors, plots, dataframes if any).
106
+ """
107
+ supported_languages = ["python", "bash", "sql", "c", "java"]
108
+ language = language.lower()
109
+
110
+ if language not in supported_languages:
111
+ return f"❌ Unsupported language: {language}. Supported languages are: {', '.join(supported_languages)}"
112
+
113
+ result = interpreter_instance.execute_code(code, language=language)
114
+
115
+ response = []
116
+
117
+ if result["status"] == "success":
118
+ response.append(f"βœ… Code executed successfully in **{language.upper()}**")
119
+
120
+ if result.get("stdout"):
121
+ response.append(
122
+ "\n**Standard Output:**\n```\n" + result["stdout"].strip() + "\n```"
123
+ )
124
+
125
+ if result.get("stderr"):
126
+ response.append(
127
+ "\n**Standard Error (if any):**\n```\n"
128
+ + result["stderr"].strip()
129
+ + "\n```"
130
+ )
131
+
132
+ if result.get("result") is not None:
133
+ response.append(
134
+ "\n**Execution Result:**\n```\n"
135
+ + str(result["result"]).strip()
136
+ + "\n```"
137
+ )
138
+
139
+ if result.get("dataframes"):
140
+ for df_info in result["dataframes"]:
141
+ response.append(
142
+ f"\n**DataFrame `{df_info['name']}` (Shape: {df_info['shape']})**"
143
+ )
144
+ df_preview = pd.DataFrame(df_info["head"])
145
+ response.append("First 5 rows:\n```\n" + str(df_preview) + "\n```")
146
+
147
+ if result.get("plots"):
148
+ response.append(
149
+ f"\n**Generated {len(result['plots'])} plot(s)** (Image data returned separately)"
150
+ )
151
+
152
+ else:
153
+ response.append(f"❌ Code execution failed in **{language.upper()}**")
154
+ if result.get("stderr"):
155
+ response.append(
156
+ "\n**Error Log:**\n```\n" + result["stderr"].strip() + "\n```"
157
+ )
158
+
159
+ return "\n".join(response)
160
+
161
+
162
+ ### =============== MATHEMATICAL TOOLS =============== ###
163
+
164
+
165
+ @tool
166
+ def multiply(a: float, b: float) -> float:
167
+ """
168
+ Multiplies two numbers.
169
+
170
+ Args:
171
+ a (float): the first number
172
+ b (float): the second number
173
+ """
174
+ return a * b
175
+
176
+
177
+ @tool
178
+ def add(a: float, b: float) -> float:
179
+ """
180
+ Adds two numbers.
181
+
182
+ Args:
183
+ a (float): the first number
184
+ b (float): the second number
185
+ """
186
+ return a + b
187
+
188
+
189
+ @tool
190
+ def subtract(a: float, b: float) -> int:
191
+ """
192
+ Subtracts two numbers.
193
+
194
+ Args:
195
+ a (float): the first number
196
+ b (float): the second number
197
+ """
198
+ return a - b
199
+
200
+
201
+ @tool
202
+ def divide(a: float, b: float) -> float:
203
+ """
204
+ Divides two numbers.
205
+
206
+ Args:
207
+ a (float): the first float number
208
+ b (float): the second float number
209
+ """
210
+ if b == 0:
211
+ raise ValueError("Cannot divided by zero.")
212
+ return a / b
213
+
214
+
215
+ @tool
216
+ def modulus(a: int, b: int) -> int:
217
+ """
218
+ Get the modulus of two numbers.
219
+
220
+ Args:
221
+ a (int): the first number
222
+ b (int): the second number
223
+ """
224
+ return a % b
225
+
226
+
227
+ @tool
228
+ def power(a: float, b: float) -> float:
229
+ """
230
+ Get the power of two numbers.
231
+
232
+ Args:
233
+ a (float): the first number
234
+ b (float): the second number
235
+ """
236
+ return a**b
237
+
238
+
239
+ @tool
240
+ def square_root(a: float) -> float | complex:
241
+ """
242
+ Get the square root of a number.
243
+
244
+ Args:
245
+ a (float): the number to get the square root of
246
+ """
247
+ if a >= 0:
248
+ return a**0.5
249
+ return cmath.sqrt(a)
250
+
251
+
252
+ ### =============== DOCUMENT PROCESSING TOOLS =============== ###
253
+
254
+
255
+ @tool
256
+ def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
257
+ """
258
+ Save content to a file and return the path.
259
+
260
+ Args:
261
+ content (str): the content to save to the file
262
+ filename (str, optional): the name of the file. If not provided, a random name file will be created.
263
+ """
264
+ temp_dir = tempfile.gettempdir()
265
+ if filename is None:
266
+ temp_file = tempfile.NamedTemporaryFile(delete=False, dir=temp_dir)
267
+ filepath = temp_file.name
268
+ else:
269
+ filepath = os.path.join(temp_dir, filename)
270
+
271
+ with open(filepath, "w") as f:
272
+ f.write(content)
273
+
274
+ return f"File saved to {filepath}. You can read this file to process its contents."
275
+
276
+
277
+ @tool
278
+ def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
279
+ """
280
+ Download a file from a URL and save it to a temporary location.
281
+
282
+ Args:
283
+ url (str): the URL of the file to download.
284
+ filename (str, optional): the name of the file. If not provided, a random name file will be created.
285
+ """
286
+ try:
287
+ # Parse URL to get filename if not provided
288
+ if not filename:
289
+ path = urlparse(url).path
290
+ filename = os.path.basename(path)
291
+ if not filename:
292
+ filename = f"downloaded_{uuid.uuid4().hex[:8]}"
293
+
294
+ # Create temporary file
295
+ temp_dir = tempfile.gettempdir()
296
+ filepath = os.path.join(temp_dir, filename)
297
+
298
+ # Download the file
299
+ response = requests.get(url, stream=True)
300
+ response.raise_for_status()
301
+
302
+ # Save the file
303
+ with open(filepath, "wb") as f:
304
+ for chunk in response.iter_content(chunk_size=8192):
305
+ f.write(chunk)
306
+
307
+ return f"File downloaded to {filepath}. You can read this file to process its contents."
308
+ except Exception as e:
309
+ return f"Error downloading file: {str(e)}"
310
+
311
+
312
+ @tool
313
+ def extract_text_from_image(image_path: str) -> str:
314
+ """
315
+ Extract text from an image using OCR library pytesseract (if available).
316
+
317
+ Args:
318
+ image_path (str): the path to the image file.
319
+ """
320
+ try:
321
+ # Open the image
322
+ image = Image.open(image_path)
323
+
324
+ # Extract text from the image
325
+ text = pytesseract.image_to_string(image)
326
+
327
+ return f"Extracted text from image:\n\n{text}"
328
+ except Exception as e:
329
+ return f"Error extracting text from image: {str(e)}"
330
+
331
+
332
+ @tool
333
+ def analyze_csv_file(file_path: str, query: str) -> str:
334
+ """
335
+ Analyze a CSV file using pandas and answer a question about it.
336
+
337
+ Args:
338
+ file_path (str): the path to the CSV file.
339
+ query (str): Question about the data
340
+ """
341
+ try:
342
+ # Read the CSV file
343
+ df = pd.read_csv(file_path)
344
+
345
+ # Run various analyses based on the query
346
+ result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
347
+ result += f"Columns: {', '.join(df.columns)}\n\n"
348
+
349
+ # Add summary statistics
350
+ result += "Summary statistics:\n"
351
+ result += str(df.describe())
352
+
353
+ return result
354
+
355
+ except Exception as e:
356
+ return f"Error analyzing CSV file: {str(e)}"
357
+
358
+
359
+ @tool
360
+ def analyze_excel_file(file_path: str, query: str) -> str:
361
+ """
362
+ Analyze an Excel file using pandas and answer a question about it.
363
+
364
+ Args:
365
+ file_path (str): the path to the Excel file.
366
+ query (str): Question about the data
367
+ """
368
+ try:
369
+ # Read the Excel file
370
+ df = pd.read_excel(file_path)
371
+
372
+ # Run various analyses based on the query
373
+ result = (
374
+ f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
375
+ )
376
+ result += f"Columns: {', '.join(df.columns)}\n\n"
377
+
378
+ # Add summary statistics
379
+ result += "Summary statistics:\n"
380
+ result += str(df.describe())
381
+
382
+ return result
383
+
384
+ except Exception as e:
385
+ return f"Error analyzing Excel file: {str(e)}"
386
+
387
+
388
+ ### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###
389
+
390
+
391
+ @tool
392
+ def analyze_image(image_base64: str) -> Dict[str, Any]:
393
+ """
394
+ Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
395
+
396
+ Args:
397
+ image_base64 (str): Base64 encoded image string
398
+
399
+ Returns:
400
+ Dictionary with analysis result
401
+ """
402
+ try:
403
+ img = decode_image(image_base64)
404
+ width, height = img.size
405
+ mode = img.mode
406
+
407
+ if mode in ("RGB", "RGBA"):
408
+ arr = np.array(img)
409
+ avg_colors = arr.mean(axis=(0, 1))
410
+ dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
411
+ brightness = avg_colors.mean()
412
+ color_analysis = {
413
+ "average_rgb": avg_colors.tolist(),
414
+ "brightness": brightness,
415
+ "dominant_color": dominant,
416
+ }
417
+ else:
418
+ color_analysis = {"note": f"No color analysis for mode {mode}"}
419
+
420
+ thumbnail = img.copy()
421
+ thumbnail.thumbnail((100, 100))
422
+ thumb_path = save_image(thumbnail, "thumbnails")
423
+ thumbnail_base64 = encode_image(thumb_path)
424
+
425
+ return {
426
+ "dimensions": (width, height),
427
+ "mode": mode,
428
+ "color_analysis": color_analysis,
429
+ "thumbnail": thumbnail_base64,
430
+ }
431
+ except Exception as e:
432
+ return {"error": str(e)}
433
+
434
+
435
+ @tool
436
+ def transform_image(
437
+ image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
438
+ ) -> Dict[str, Any]:
439
+ """
440
+ Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
441
+
442
+ Args:
443
+ image_base64 (str): Base64 encoded input image
444
+ operation (str): Transformation operation
445
+ params (Dict[str, Any], optional): Parameters for the operation
446
+
447
+ Returns:
448
+ Dictionary with transformed image (base64)
449
+ """
450
+ try:
451
+ img = decode_image(image_base64)
452
+ params = params or {}
453
+
454
+ if operation == "resize":
455
+ img = img.resize(
456
+ (
457
+ params.get("width", img.width // 2),
458
+ params.get("height", img.height // 2),
459
+ )
460
+ )
461
+ elif operation == "rotate":
462
+ img = img.rotate(params.get("angle", 90), expand=True)
463
+ elif operation == "crop":
464
+ img = img.crop(
465
+ (
466
+ params.get("left", 0),
467
+ params.get("top", 0),
468
+ params.get("right", img.width),
469
+ params.get("bottom", img.height),
470
+ )
471
+ )
472
+ elif operation == "flip":
473
+ if params.get("direction", "horizontal") == "horizontal":
474
+ img = img.transpose(Image.FLIP_LEFT_RIGHT)
475
+ else:
476
+ img = img.transpose(Image.FLIP_TOP_BOTTOM)
477
+ elif operation == "adjust_brightness":
478
+ img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
479
+ elif operation == "adjust_contrast":
480
+ img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
481
+ elif operation == "blur":
482
+ img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
483
+ elif operation == "sharpen":
484
+ img = img.filter(ImageFilter.SHARPEN)
485
+ elif operation == "grayscale":
486
+ img = img.convert("L")
487
+ else:
488
+ return {"error": f"Unknown operation: {operation}"}
489
+
490
+ result_path = save_image(img)
491
+ result_base64 = encode_image(result_path)
492
+ return {"transformed_image": result_base64}
493
+
494
+ except Exception as e:
495
+ return {"error": str(e)}
496
+
497
+
498
+ @tool
499
+ def draw_on_image(
500
+ image_base64: str, drawing_type: str, params: Dict[str, Any]
501
+ ) -> Dict[str, Any]:
502
+ """
503
+ Draw shapes (rectangle, circle, line) or text onto an image.
504
+
505
+ Args:
506
+ image_base64 (str): Base64 encoded input image
507
+ drawing_type (str): Drawing type
508
+ params (Dict[str, Any]): Drawing parameters
509
+
510
+ Returns:
511
+ Dictionary with result image (base64)
512
+ """
513
+ try:
514
+ img = decode_image(image_base64)
515
+ draw = ImageDraw.Draw(img)
516
+ color = params.get("color", "red")
517
+
518
+ if drawing_type == "rectangle":
519
+ draw.rectangle(
520
+ [params["left"], params["top"], params["right"], params["bottom"]],
521
+ outline=color,
522
+ width=params.get("width", 2),
523
+ )
524
+ elif drawing_type == "circle":
525
+ x, y, r = params["x"], params["y"], params["radius"]
526
+ draw.ellipse(
527
+ (x - r, y - r, x + r, y + r),
528
+ outline=color,
529
+ width=params.get("width", 2),
530
+ )
531
+ elif drawing_type == "line":
532
+ draw.line(
533
+ (
534
+ params["start_x"],
535
+ params["start_y"],
536
+ params["end_x"],
537
+ params["end_y"],
538
+ ),
539
+ fill=color,
540
+ width=params.get("width", 2),
541
+ )
542
+ elif drawing_type == "text":
543
+ font_size = params.get("font_size", 20)
544
+ try:
545
+ font = ImageFont.truetype("arial.ttf", font_size)
546
+ except IOError:
547
+ font = ImageFont.load_default()
548
+ draw.text(
549
+ (params["x"], params["y"]),
550
+ params.get("text", "Text"),
551
+ fill=color,
552
+ font=font,
553
+ )
554
+ else:
555
+ return {"error": f"Unknown drawing type: {drawing_type}"}
556
+
557
+ result_path = save_image(img)
558
+ result_base64 = encode_image(result_path)
559
+ return {"result_image": result_base64}
560
+
561
+ except Exception as e:
562
+ return {"error": str(e)}
563
+
564
+
565
+ @tool
566
+ def generate_simple_image(
567
+ image_type: str,
568
+ width: int = 500,
569
+ height: int = 500,
570
+ params: Optional[Dict[str, Any]] = None,
571
+ ) -> Dict[str, Any]:
572
+ """
573
+ Generate a simple image (gradient, noise, pattern, chart).
574
+
575
+ Args:
576
+ image_type (str): Type of image
577
+ width (int), height (int)
578
+ params (Dict[str, Any], optional): Specific parameters
579
+
580
+ Returns:
581
+ Dictionary with generated image (base64)
582
+ """
583
+ try:
584
+ params = params or {}
585
+
586
+ if image_type == "gradient":
587
+ direction = params.get("direction", "horizontal")
588
+ start_color = params.get("start_color", (255, 0, 0))
589
+ end_color = params.get("end_color", (0, 0, 255))
590
+
591
+ img = Image.new("RGB", (width, height))
592
+ draw = ImageDraw.Draw(img)
593
+
594
+ if direction == "horizontal":
595
+ for x in range(width):
596
+ r = int(
597
+ start_color[0] + (end_color[0] - start_color[0]) * x / width
598
+ )
599
+ g = int(
600
+ start_color[1] + (end_color[1] - start_color[1]) * x / width
601
+ )
602
+ b = int(
603
+ start_color[2] + (end_color[2] - start_color[2]) * x / width
604
+ )
605
+ draw.line([(x, 0), (x, height)], fill=(r, g, b))
606
+ else:
607
+ for y in range(height):
608
+ r = int(
609
+ start_color[0] + (end_color[0] - start_color[0]) * y / height
610
+ )
611
+ g = int(
612
+ start_color[1] + (end_color[1] - start_color[1]) * y / height
613
+ )
614
+ b = int(
615
+ start_color[2] + (end_color[2] - start_color[2]) * y / height
616
+ )
617
+ draw.line([(0, y), (width, y)], fill=(r, g, b))
618
+
619
+ elif image_type == "noise":
620
+ noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)
621
+ img = Image.fromarray(noise_array, "RGB")
622
+
623
+ else:
624
+ return {"error": f"Unsupported image_type {image_type}"}
625
+
626
+ result_path = save_image(img)
627
+ result_base64 = encode_image(result_path)
628
+ return {"generated_image": result_base64}
629
+
630
+ except Exception as e:
631
+ return {"error": str(e)}
632
+
633
+
634
+ @tool
635
+ def combine_images(
636
+ images_base64: List[str], operation: str, params: Optional[Dict[str, Any]] = None
637
+ ) -> Dict[str, Any]:
638
+ """
639
+ Combine multiple images (collage, stack, blend).
640
+
641
+ Args:
642
+ images_base64 (List[str]): List of base64 images
643
+ operation (str): Combination type
644
+ params (Dict[str, Any], optional)
645
+
646
+ Returns:
647
+ Dictionary with combined image (base64)
648
+ """
649
+ try:
650
+ images = [decode_image(b64) for b64 in images_base64]
651
+ params = params or {}
652
+
653
+ if operation == "stack":
654
+ direction = params.get("direction", "horizontal")
655
+ if direction == "horizontal":
656
+ total_width = sum(img.width for img in images)
657
+ max_height = max(img.height for img in images)
658
+ new_img = Image.new("RGB", (total_width, max_height))
659
+ x = 0
660
+ for img in images:
661
+ new_img.paste(img, (x, 0))
662
+ x += img.width
663
+ else:
664
+ max_width = max(img.width for img in images)
665
+ total_height = sum(img.height for img in images)
666
+ new_img = Image.new("RGB", (max_width, total_height))
667
+ y = 0
668
+ for img in images:
669
+ new_img.paste(img, (0, y))
670
+ y += img.height
671
+ else:
672
+ return {"error": f"Unsupported combination operation {operation}"}
673
+
674
+ result_path = save_image(new_img)
675
+ result_base64 = encode_image(result_path)
676
+ return {"combined_image": result_base64}
677
+
678
+ except Exception as e:
679
+ return {"error": str(e)}
680
+
681
+
682
+ # load the system prompt from the file
683
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
684
+ system_prompt = f.read()
685
+ print(system_prompt)
686
+
687
+ # System message
688
+ sys_msg = SystemMessage(content=system_prompt)
689
+
690
+ # build a retriever
691
+ embeddings = HuggingFaceEmbeddings(
692
+ model_name="sentence-transformers/all-mpnet-base-v2"
693
+ ) # dim=768
694
+ supabase: Client = create_client(
695
+ os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_ROLE_KEY")
696
+ )
697
+ vector_store = SupabaseVectorStore(
698
+ client=supabase,
699
+ embedding=embeddings,
700
+ table_name="documents2",
701
+ query_name="match_documents_2",
702
+ )
703
+ create_retriever_tool = create_retriever_tool(
704
+ retriever=vector_store.as_retriever(),
705
+ name="Question Search",
706
+ description="A tool to retrieve similar questions from a vector store.",
707
+ )
708
+
709
+
710
+ tools = [
711
+ web_search,
712
+ wiki_search,
713
+ arxiv_search,
714
+ multiply,
715
+ add,
716
+ subtract,
717
+ divide,
718
+ modulus,
719
+ power,
720
+ square_root,
721
+ save_and_read_file,
722
+ download_file_from_url,
723
+ extract_text_from_image,
724
+ analyze_csv_file,
725
+ analyze_excel_file,
726
+ execute_code_multilang,
727
+ analyze_image,
728
+ transform_image,
729
+ draw_on_image,
730
+ generate_simple_image,
731
+ combine_images,
732
+ ]
733
+
734
+
735
+ # Build graph function
736
+ def build_graph(provider: str = "groq"):
737
+ """Build the graph"""
738
+ # Load environment variables from .env file
739
+ if provider == "groq":
740
+ # Groq https://console.groq.com/docs/models
741
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
742
+ elif provider == "huggingface":
743
+ # TODO: Add huggingface endpoint
744
+ llm = ChatHuggingFace(
745
+ llm=HuggingFaceEndpoint(
746
+ repo_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
747
+ task="text-generation", # for chat‐style use β€œtext-generation”
748
+ max_new_tokens=1024,
749
+ do_sample=False,
750
+ repetition_penalty=1.03,
751
+ temperature=0,
752
+ ),
753
+ verbose=True,
754
+ )
755
+ else:
756
+ raise ValueError("Invalid provider. Choose 'groq' or 'huggingface'.")
757
+ # Bind tools to LLM
758
+ llm_with_tools = llm.bind_tools(tools)
759
+
760
+ # Node
761
+ def assistant(state: MessagesState):
762
+ """Assistant node"""
763
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
764
+
765
+ def retriever(state: MessagesState):
766
+ """Retriever node"""
767
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
768
+
769
+ if similar_question: # Check if the list is not empty
770
+ example_msg = HumanMessage(
771
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
772
+ )
773
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
774
+ else:
775
+ # Handle the case when no similar questions are found
776
+ return {"messages": [sys_msg] + state["messages"]}
777
+
778
+ builder = StateGraph(MessagesState)
779
+ builder.add_node("retriever", retriever)
780
+ builder.add_node("assistant", assistant)
781
+ builder.add_node("tools", ToolNode(tools))
782
+ builder.add_edge(START, "retriever")
783
+ builder.add_edge("retriever", "assistant")
784
+ builder.add_conditional_edges(
785
+ "assistant",
786
+ tools_condition,
787
+ )
788
+ builder.add_edge("tools", "assistant")
789
+
790
+ # Compile graph
791
+ return builder.compile()
792
+
793
+
794
+ # test
795
+ if __name__ == "__main__":
796
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
797
+ graph = build_graph(provider="groq")
798
+ messages = [HumanMessage(content=question)]
799
+ messages = graph.invoke({"messages": messages})
800
+ for m in messages["messages"]:
801
+ m.pretty_print()
code_interpreter.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import sys
4
+ import uuid
5
+ import base64
6
+ import traceback
7
+ import contextlib
8
+ import tempfile
9
+ import subprocess
10
+ import sqlite3
11
+ from typing import Dict, List, Any, Optional, Union
12
+ import numpy as np
13
+ import pandas as pd
14
+ import matplotlib.pyplot as plt
15
+ from PIL import Image
16
+
17
+ class CodeInterpreter:
18
+ def __init__(self, allowed_modules=None, max_execution_time=30, working_directory=None):
19
+ """Initialize the code interpreter with safety measures."""
20
+ self.allowed_modules = allowed_modules or [
21
+ "numpy", "pandas", "matplotlib", "scipy", "sklearn",
22
+ "math", "random", "statistics", "datetime", "collections",
23
+ "itertools", "functools", "operator", "re", "json",
24
+ "sympy", "networkx", "nltk", "PIL", "pytesseract",
25
+ "cmath", "uuid", "tempfile", "requests", "urllib"
26
+ ]
27
+ self.max_execution_time = max_execution_time
28
+ self.working_directory = working_directory or os.path.join(os.getcwd())
29
+ if not os.path.exists(self.working_directory):
30
+ os.makedirs(self.working_directory)
31
+
32
+ self.globals = {
33
+ "__builtins__": __builtins__,
34
+ "np": np,
35
+ "pd": pd,
36
+ "plt": plt,
37
+ "Image": Image,
38
+ }
39
+ self.temp_sqlite_db = os.path.join(tempfile.gettempdir(), "code_exec.db")
40
+
41
+ def execute_code(self, code: str, language: str = "python") -> Dict[str, Any]:
42
+ """Execute the provided code in the selected programming language."""
43
+ language = language.lower()
44
+ execution_id = str(uuid.uuid4())
45
+
46
+ result = {
47
+ "execution_id": execution_id,
48
+ "status": "error",
49
+ "stdout": "",
50
+ "stderr": "",
51
+ "result": None,
52
+ "plots": [],
53
+ "dataframes": []
54
+ }
55
+
56
+ try:
57
+ if language == "python":
58
+ return self._execute_python(code, execution_id)
59
+ elif language == "bash":
60
+ return self._execute_bash(code, execution_id)
61
+ elif language == "sql":
62
+ return self._execute_sql(code, execution_id)
63
+ elif language == "c":
64
+ return self._execute_c(code, execution_id)
65
+ elif language == "java":
66
+ return self._execute_java(code, execution_id)
67
+ else:
68
+ result["stderr"] = f"Unsupported language: {language}"
69
+ except Exception as e:
70
+ result["stderr"] = str(e)
71
+
72
+ return result
73
+
74
+ def _execute_python(self, code: str, execution_id: str) -> dict:
75
+ output_buffer = io.StringIO()
76
+ error_buffer = io.StringIO()
77
+ result = {
78
+ "execution_id": execution_id,
79
+ "status": "error",
80
+ "stdout": "",
81
+ "stderr": "",
82
+ "result": None,
83
+ "plots": [],
84
+ "dataframes": []
85
+ }
86
+
87
+ try:
88
+ exec_dir = os.path.join(self.working_directory, execution_id)
89
+ os.makedirs(exec_dir, exist_ok=True)
90
+ plt.switch_backend('Agg')
91
+
92
+ with contextlib.redirect_stdout(output_buffer), contextlib.redirect_stderr(error_buffer):
93
+ exec_result = exec(code, self.globals)
94
+
95
+ if plt.get_fignums():
96
+ for i, fig_num in enumerate(plt.get_fignums()):
97
+ fig = plt.figure(fig_num)
98
+ img_path = os.path.join(exec_dir, f"plot_{i}.png")
99
+ fig.savefig(img_path)
100
+ with open(img_path, "rb") as img_file:
101
+ img_data = base64.b64encode(img_file.read()).decode('utf-8')
102
+ result["plots"].append({
103
+ "figure_number": fig_num,
104
+ "data": img_data
105
+ })
106
+
107
+ for var_name, var_value in self.globals.items():
108
+ if isinstance(var_value, pd.DataFrame) and len(var_value) > 0:
109
+ result["dataframes"].append({
110
+ "name": var_name,
111
+ "head": var_value.head().to_dict(),
112
+ "shape": var_value.shape,
113
+ "dtypes": str(var_value.dtypes)
114
+ })
115
+
116
+ result["status"] = "success"
117
+ result["stdout"] = output_buffer.getvalue()
118
+ result["result"] = exec_result
119
+
120
+ except Exception as e:
121
+ result["status"] = "error"
122
+ result["stderr"] = f"{error_buffer.getvalue()}\n{traceback.format_exc()}"
123
+
124
+ return result
125
+
126
+ def _execute_bash(self, code: str, execution_id: str) -> dict:
127
+ try:
128
+ completed = subprocess.run(
129
+ code, shell=True, capture_output=True, text=True, timeout=self.max_execution_time
130
+ )
131
+ return {
132
+ "execution_id": execution_id,
133
+ "status": "success" if completed.returncode == 0 else "error",
134
+ "stdout": completed.stdout,
135
+ "stderr": completed.stderr,
136
+ "result": None,
137
+ "plots": [],
138
+ "dataframes": []
139
+ }
140
+ except subprocess.TimeoutExpired:
141
+ return {
142
+ "execution_id": execution_id,
143
+ "status": "error",
144
+ "stdout": "",
145
+ "stderr": "Execution timed out.",
146
+ "result": None,
147
+ "plots": [],
148
+ "dataframes": []
149
+ }
150
+
151
+ def _execute_sql(self, code: str, execution_id: str) -> dict:
152
+ result = {
153
+ "execution_id": execution_id,
154
+ "status": "error",
155
+ "stdout": "",
156
+ "stderr": "",
157
+ "result": None,
158
+ "plots": [],
159
+ "dataframes": []
160
+ }
161
+ try:
162
+ conn = sqlite3.connect(self.temp_sqlite_db)
163
+ cur = conn.cursor()
164
+ cur.execute(code)
165
+ if code.strip().lower().startswith("select"):
166
+ columns = [description[0] for description in cur.description]
167
+ rows = cur.fetchall()
168
+ df = pd.DataFrame(rows, columns=columns)
169
+ result["dataframes"].append({
170
+ "name": "query_result",
171
+ "head": df.head().to_dict(),
172
+ "shape": df.shape,
173
+ "dtypes": str(df.dtypes)
174
+ })
175
+ else:
176
+ conn.commit()
177
+
178
+ result["status"] = "success"
179
+ result["stdout"] = "Query executed successfully."
180
+
181
+ except Exception as e:
182
+ result["stderr"] = str(e)
183
+ finally:
184
+ conn.close()
185
+
186
+ return result
187
+
188
+ def _execute_c(self, code: str, execution_id: str) -> dict:
189
+ temp_dir = tempfile.mkdtemp()
190
+ source_path = os.path.join(temp_dir, "program.c")
191
+ binary_path = os.path.join(temp_dir, "program")
192
+
193
+ try:
194
+ with open(source_path, "w") as f:
195
+ f.write(code)
196
+
197
+ compile_proc = subprocess.run(
198
+ ["gcc", source_path, "-o", binary_path],
199
+ capture_output=True, text=True, timeout=self.max_execution_time
200
+ )
201
+ if compile_proc.returncode != 0:
202
+ return {
203
+ "execution_id": execution_id,
204
+ "status": "error",
205
+ "stdout": compile_proc.stdout,
206
+ "stderr": compile_proc.stderr,
207
+ "result": None,
208
+ "plots": [],
209
+ "dataframes": []
210
+ }
211
+
212
+ run_proc = subprocess.run(
213
+ [binary_path],
214
+ capture_output=True, text=True, timeout=self.max_execution_time
215
+ )
216
+ return {
217
+ "execution_id": execution_id,
218
+ "status": "success" if run_proc.returncode == 0 else "error",
219
+ "stdout": run_proc.stdout,
220
+ "stderr": run_proc.stderr,
221
+ "result": None,
222
+ "plots": [],
223
+ "dataframes": []
224
+ }
225
+ except Exception as e:
226
+ return {
227
+ "execution_id": execution_id,
228
+ "status": "error",
229
+ "stdout": "",
230
+ "stderr": str(e),
231
+ "result": None,
232
+ "plots": [],
233
+ "dataframes": []
234
+ }
235
+
236
+ def _execute_java(self, code: str, execution_id: str) -> dict:
237
+ temp_dir = tempfile.mkdtemp()
238
+ source_path = os.path.join(temp_dir, "Main.java")
239
+
240
+ try:
241
+ with open(source_path, "w") as f:
242
+ f.write(code)
243
+
244
+ compile_proc = subprocess.run(
245
+ ["javac", source_path],
246
+ capture_output=True, text=True, timeout=self.max_execution_time
247
+ )
248
+ if compile_proc.returncode != 0:
249
+ return {
250
+ "execution_id": execution_id,
251
+ "status": "error",
252
+ "stdout": compile_proc.stdout,
253
+ "stderr": compile_proc.stderr,
254
+ "result": None,
255
+ "plots": [],
256
+ "dataframes": []
257
+ }
258
+
259
+ run_proc = subprocess.run(
260
+ ["java", "-cp", temp_dir, "Main"],
261
+ capture_output=True, text=True, timeout=self.max_execution_time
262
+ )
263
+ return {
264
+ "execution_id": execution_id,
265
+ "status": "success" if run_proc.returncode == 0 else "error",
266
+ "stdout": run_proc.stdout,
267
+ "stderr": run_proc.stderr,
268
+ "result": None,
269
+ "plots": [],
270
+ "dataframes": []
271
+ }
272
+ except Exception as e:
273
+ return {
274
+ "execution_id": execution_id,
275
+ "status": "error",
276
+ "stdout": "",
277
+ "stderr": str(e),
278
+ "result": None,
279
+ "plots": [],
280
+ "dataframes": []
281
+ }
explore_metadata.ipynb ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 9,
6
+ "id": "a600d7fc",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import json \n",
11
+ "with open('metadata.jsonl', 'r') as f: \n",
12
+ " json_list = list(f)\n",
13
+ "\n",
14
+ "json_QA = []\n",
15
+ "for json_str in json_list: \n",
16
+ " json_data = json.loads(json_str)\n",
17
+ " json_QA.append(json_data)"
18
+ ]
19
+ },
20
+ {
21
+ "cell_type": "code",
22
+ "execution_count": 10,
23
+ "id": "fa5d8eb8",
24
+ "metadata": {},
25
+ "outputs": [
26
+ {
27
+ "name": "stdout",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "==================================================\n",
31
+ "Task ID: d1af70ea-a9a4-421a-b9cc-94b5e02f1788\n",
32
+ "Question: As of the 2020 census, what was the population difference between the largest county seat and smallest county seat, by land area of the county seat, in Washington state? For population figures, please use the official data from data.census.gov. Please report the integer difference.\n",
33
+ "Level: 2\n",
34
+ "Final Answer: 736455\n",
35
+ "Annotator Metadata: \n",
36
+ " β”œβ”€β”€ Steps: \n",
37
+ " β”‚ β”œβ”€β”€ Step 1: Using a web browser, access a search engine and conduct a search, \"Washington cities by area\"\n",
38
+ " β”‚ β”œβ”€β”€ Step 2: Navigate to the second search result, https://en.wikipedia.org/wiki/List_of_municipalities_in_Washington\n",
39
+ " β”‚ β”œβ”€β”€ Step 3: Evaluate the page contents, finding the largest and smallest county seats by land area, Seattle and Cathlamet\n",
40
+ " β”‚ β”œβ”€β”€ Step 4: Using a web browser, navigate to https://data.census.gov/\n",
41
+ " β”‚ β”œβ”€β”€ Step 5: Using the website's search area, conduct a search, Seattle, Washington\n",
42
+ " β”‚ β”œβ”€β”€ Step 6: Record the reported 2020 Decennial Census population of Seattle, Washington, 737,015\n",
43
+ " β”‚ β”œβ”€β”€ Step 7: Using the website's search area, conduct a search, Cathlamet, Washington\n",
44
+ " β”‚ β”œβ”€β”€ Step 8: Record the reported 2020 Decennial Census population of Cathlamet, Washington, 560\n",
45
+ " β”‚ β”œβ”€β”€ Step 9: Using a calculator, find the difference in populations,\n",
46
+ " β”‚ β”œβ”€β”€ \n",
47
+ " β”‚ β”œβ”€β”€ 737,015 - 560\n",
48
+ " β”‚ β”œβ”€β”€ 736,455\n",
49
+ " β”‚ β”œβ”€β”€ Step 10: Report the correct answer to my user in the requested format, \"736,455\"\n",
50
+ " β”œβ”€β”€ Number of steps: 10\n",
51
+ " β”œβ”€β”€ How long did this take?: 5 minutes\n",
52
+ " β”œβ”€β”€ Tools:\n",
53
+ " β”‚ β”œβ”€β”€ 1. A web browser\n",
54
+ " β”‚ β”œβ”€β”€ 2. A search engine\n",
55
+ " β”‚ β”œβ”€β”€ 3. A calculator\n",
56
+ " └── Number of tools: 3\n",
57
+ "==================================================\n"
58
+ ]
59
+ }
60
+ ],
61
+ "source": [
62
+ "import random\n",
63
+ "random_samples = random.sample(json_QA, 1)\n",
64
+ "for sample in random_samples:\n",
65
+ " print(\"=\" * 50)\n",
66
+ " print(f\"Task ID: {sample['task_id']}\")\n",
67
+ " print(f\"Question: {sample['Question']}\")\n",
68
+ " print(f\"Level: {sample['Level']}\")\n",
69
+ " print(f\"Final Answer: {sample['Final answer']}\")\n",
70
+ " print(f\"Annotator Metadata: \")\n",
71
+ " print(f\" β”œβ”€β”€ Steps: \")\n",
72
+ " for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
73
+ " print(f\" β”‚ β”œβ”€β”€ {step}\")\n",
74
+ " print(f\" β”œβ”€β”€ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
75
+ " print(f\" β”œβ”€β”€ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
76
+ " print(f\" β”œβ”€β”€ Tools:\")\n",
77
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
78
+ " print(f\" β”‚ β”œβ”€β”€ {tool}\")\n",
79
+ " print(f\" └── Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
80
+ "print(\"=\" * 50)"
81
+ ]
82
+ },
83
+ {
84
+ "cell_type": "code",
85
+ "execution_count": 11,
86
+ "id": "05076516",
87
+ "metadata": {},
88
+ "outputs": [],
89
+ "source": [
90
+ "import os\n",
91
+ "from dotenv import load_dotenv\n",
92
+ "from langchain_huggingface import HuggingFaceEmbeddings\n",
93
+ "from langchain_community.vectorstores import SupabaseVectorStore\n",
94
+ "from supabase.client import Client, create_client\n",
95
+ "\n",
96
+ "\n",
97
+ "load_dotenv()\n",
98
+ "embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
99
+ "\n",
100
+ "supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
101
+ "supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
102
+ "supabase: Client = create_client(supabase_url, supabase_key)"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": 20,
108
+ "id": "aa1402e3",
109
+ "metadata": {},
110
+ "outputs": [],
111
+ "source": [
112
+ "from langchain.schema import Document\n",
113
+ "docs = []\n",
114
+ "cnt = 0 \n",
115
+ "for sample in json_QA:\n",
116
+ " content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
117
+ " doc = {\n",
118
+ " \"id\" : cnt,\n",
119
+ " \"content\" : content,\n",
120
+ " \"metadata\" : {\n",
121
+ " \"source\" : sample['task_id']\n",
122
+ " },\n",
123
+ " \"embedding\" : embeddings.embed_query(content),\n",
124
+ " }\n",
125
+ " docs.append(doc)\n",
126
+ " cnt += 1\n",
127
+ "\n",
128
+ "# upload the documents to the vector database\n",
129
+ "try:\n",
130
+ " response = (\n",
131
+ " supabase.table(\"documents2\")\n",
132
+ " .insert(docs)\n",
133
+ " .execute()\n",
134
+ " )\n",
135
+ "except Exception as exception:\n",
136
+ " print(\"Error inserting data into Supabase:\", exception)\n",
137
+ "\n",
138
+ "# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
139
+ "# import pandas as pd\n",
140
+ "# df = pd.DataFrame(docs)\n",
141
+ "# df.to_csv('supabase_docs.csv',index=False)"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 41,
147
+ "id": "9aa7eb5e",
148
+ "metadata": {},
149
+ "outputs": [],
150
+ "source": [
151
+ "# add items to vector database\n",
152
+ "vector_store = SupabaseVectorStore(\n",
153
+ " client=supabase,\n",
154
+ " embedding= embeddings,\n",
155
+ " table_name=\"documents2\",\n",
156
+ " query_name=\"match_documents_2\",\n",
157
+ ")\n",
158
+ "retriever = vector_store.as_retriever()"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 42,
164
+ "id": "9eecafd1",
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
169
+ "# matched_docs = vector_store.similarity_search(query, k=2)\n",
170
+ "docs = retriever.invoke(query)"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": 43,
176
+ "id": "ff917840",
177
+ "metadata": {},
178
+ "outputs": [
179
+ {
180
+ "data": {
181
+ "text/plain": [
182
+ "Document(metadata={'source': '840bfca7-4f7b-481a-8794-c560c340185d'}, page_content='Question : On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\\n\\nFinal answer : 80GSFC21M0002')"
183
+ ]
184
+ },
185
+ "execution_count": 43,
186
+ "metadata": {},
187
+ "output_type": "execute_result"
188
+ }
189
+ ],
190
+ "source": [
191
+ "docs[0]"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "code",
196
+ "execution_count": 44,
197
+ "id": "01c8f337",
198
+ "metadata": {},
199
+ "outputs": [
200
+ {
201
+ "name": "stdout",
202
+ "output_type": "stream",
203
+ "text": [
204
+ "List of tools used in all samples:\n",
205
+ "Total number of tools used: 83\n",
206
+ " β”œβ”€β”€ web browser: 107\n",
207
+ " β”œβ”€β”€ image recognition tools (to identify and parse a figure with three axes): 1\n",
208
+ " β”œβ”€β”€ search engine: 101\n",
209
+ " β”œβ”€β”€ calculator: 34\n",
210
+ " β”œβ”€β”€ unlambda compiler (optional): 1\n",
211
+ " β”œβ”€β”€ a web browser.: 2\n",
212
+ " β”œβ”€β”€ a search engine.: 2\n",
213
+ " β”œβ”€β”€ a calculator.: 1\n",
214
+ " β”œβ”€β”€ microsoft excel: 5\n",
215
+ " β”œβ”€β”€ google search: 1\n",
216
+ " β”œβ”€β”€ ne: 9\n",
217
+ " β”œβ”€β”€ pdf access: 7\n",
218
+ " β”œβ”€β”€ file handling: 2\n",
219
+ " β”œβ”€β”€ python: 3\n",
220
+ " β”œβ”€β”€ image recognition tools: 12\n",
221
+ " β”œβ”€β”€ jsonld file access: 1\n",
222
+ " β”œβ”€β”€ video parsing: 1\n",
223
+ " β”œβ”€β”€ python compiler: 1\n",
224
+ " β”œβ”€β”€ video recognition tools: 3\n",
225
+ " β”œβ”€β”€ pdf viewer: 7\n",
226
+ " β”œβ”€β”€ microsoft excel / google sheets: 3\n",
227
+ " β”œβ”€β”€ word document access: 1\n",
228
+ " β”œβ”€β”€ tool to extract text from images: 1\n",
229
+ " β”œβ”€β”€ a word reversal tool / script: 1\n",
230
+ " β”œβ”€β”€ counter: 1\n",
231
+ " β”œβ”€β”€ excel: 3\n",
232
+ " β”œβ”€β”€ image recognition: 5\n",
233
+ " β”œβ”€β”€ color recognition: 3\n",
234
+ " β”œβ”€β”€ excel file access: 3\n",
235
+ " β”œβ”€β”€ xml file access: 1\n",
236
+ " β”œβ”€β”€ access to the internet archive, web.archive.org: 1\n",
237
+ " β”œβ”€β”€ text processing/diff tool: 1\n",
238
+ " β”œβ”€β”€ gif parsing tools: 1\n",
239
+ " β”œβ”€β”€ a web browser: 7\n",
240
+ " β”œβ”€β”€ a search engine: 7\n",
241
+ " β”œβ”€β”€ a speech-to-text tool: 2\n",
242
+ " β”œβ”€β”€ code/data analysis tools: 1\n",
243
+ " β”œβ”€β”€ audio capability: 2\n",
244
+ " β”œβ”€β”€ pdf reader: 1\n",
245
+ " β”œβ”€β”€ markdown: 1\n",
246
+ " β”œβ”€β”€ a calculator: 5\n",
247
+ " β”œβ”€β”€ access to wikipedia: 3\n",
248
+ " β”œβ”€β”€ image recognition/ocr: 3\n",
249
+ " β”œβ”€β”€ google translate access: 1\n",
250
+ " β”œβ”€β”€ ocr: 4\n",
251
+ " β”œβ”€β”€ bass note data: 1\n",
252
+ " β”œβ”€β”€ text editor: 1\n",
253
+ " β”œβ”€β”€ xlsx file access: 1\n",
254
+ " β”œβ”€β”€ powerpoint viewer: 1\n",
255
+ " β”œβ”€β”€ csv file access: 1\n",
256
+ " β”œβ”€β”€ calculator (or use excel): 1\n",
257
+ " β”œβ”€β”€ computer algebra system: 1\n",
258
+ " β”œβ”€β”€ video processing software: 1\n",
259
+ " β”œβ”€β”€ audio processing software: 1\n",
260
+ " β”œβ”€β”€ computer vision: 1\n",
261
+ " β”œβ”€β”€ google maps: 1\n",
262
+ " β”œβ”€β”€ access to excel files: 1\n",
263
+ " β”œβ”€β”€ calculator (or ability to count): 1\n",
264
+ " β”œβ”€β”€ a file interface: 3\n",
265
+ " β”œβ”€β”€ a python ide: 1\n",
266
+ " β”œβ”€β”€ spreadsheet editor: 1\n",
267
+ " β”œβ”€β”€ tools required: 1\n",
268
+ " β”œβ”€β”€ b browser: 1\n",
269
+ " β”œβ”€β”€ image recognition and processing tools: 1\n",
270
+ " β”œβ”€β”€ computer vision or ocr: 1\n",
271
+ " β”œβ”€β”€ c++ compiler: 1\n",
272
+ " β”œβ”€β”€ access to google maps: 1\n",
273
+ " β”œβ”€β”€ youtube player: 1\n",
274
+ " β”œβ”€β”€ natural language processor: 1\n",
275
+ " β”œβ”€β”€ graph interaction tools: 1\n",
276
+ " β”œβ”€β”€ bablyonian cuniform -> arabic legend: 1\n",
277
+ " β”œβ”€β”€ access to youtube: 1\n",
278
+ " β”œβ”€β”€ image search tools: 1\n",
279
+ " β”œβ”€β”€ calculator or counting function: 1\n",
280
+ " β”œβ”€β”€ a speech-to-text audio processing tool: 1\n",
281
+ " β”œβ”€β”€ access to academic journal websites: 1\n",
282
+ " β”œβ”€β”€ pdf reader/extracter: 1\n",
283
+ " β”œβ”€β”€ rubik's cube model: 1\n",
284
+ " β”œβ”€β”€ wikipedia: 1\n",
285
+ " β”œβ”€β”€ video capability: 1\n",
286
+ " β”œβ”€β”€ image processing tools: 1\n",
287
+ " β”œβ”€β”€ age recognition software: 1\n",
288
+ " β”œβ”€β”€ youtube: 1\n"
289
+ ]
290
+ }
291
+ ],
292
+ "source": [
293
+ "# list of the tools used in all the samples\n",
294
+ "from collections import Counter, OrderedDict\n",
295
+ "\n",
296
+ "tools = []\n",
297
+ "for sample in json_QA:\n",
298
+ " for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
299
+ " tool = tool[2:].strip().lower()\n",
300
+ " if tool.startswith(\"(\"):\n",
301
+ " tool = tool[11:].strip()\n",
302
+ " tools.append(tool)\n",
303
+ "tools_counter = OrderedDict(Counter(tools))\n",
304
+ "print(\"List of tools used in all samples:\")\n",
305
+ "print(\"Total number of tools used:\", len(tools_counter))\n",
306
+ "for tool, count in tools_counter.items():\n",
307
+ " print(f\" β”œβ”€β”€ {tool}: {count}\")"
308
+ ]
309
+ }
310
+ ],
311
+ "metadata": {
312
+ "kernelspec": {
313
+ "display_name": "env",
314
+ "language": "python",
315
+ "name": "python3"
316
+ },
317
+ "language_info": {
318
+ "codemirror_mode": {
319
+ "name": "ipython",
320
+ "version": 3
321
+ },
322
+ "file_extension": ".py",
323
+ "mimetype": "text/x-python",
324
+ "name": "python",
325
+ "nbconvert_exporter": "python",
326
+ "pygments_lexer": "ipython3",
327
+ "version": "3.11.9"
328
+ }
329
+ },
330
+ "nbformat": 4,
331
+ "nbformat_minor": 5
332
+ }
image_processing.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import io
3
+ import base64
4
+ import uuid
5
+ from PIL import Image
6
+
7
+ # Helper functions for image processing
8
+ def encode_image(image_path: str) -> str:
9
+ """Convert an image file to base64 string."""
10
+ with open(image_path, "rb") as image_file:
11
+ return base64.b64encode(image_file.read()).decode("utf-8")
12
+
13
+
14
+ def decode_image(base64_string: str) -> Image.Image:
15
+ """Convert a base64 string to a PIL Image."""
16
+ image_data = base64.b64decode(base64_string)
17
+ return Image.open(io.BytesIO(image_data))
18
+
19
+
20
+ def save_image(image: Image.Image, directory: str = "image_outputs") -> str:
21
+ """Save a PIL Image to disk and return the path."""
22
+ os.makedirs(directory, exist_ok=True)
23
+ image_id = str(uuid.uuid4())
24
+ image_path = os.path.join(directory, f"{image_id}.png")
25
+ image.save(image_path)
26
+ return image_path
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
19
+ pytesseract
20
+ matplotlib
supabase_docs.csv ADDED
The diff for this file is too large to render. See raw diff
 
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, Apply the rules above for each element (number or string), ensure there is exactly one space after each comma.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.