File size: 28,857 Bytes
613a6ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "94c8b42c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import getpass\n",
    "import os\n",
    "from langchain.chat_models import init_chat_model\n",
    "\n",
    "if not os.environ.get(\"GOOGLE_API_KEY\"):\n",
    "  os.environ[\"GOOGLE_API_KEY\"] = getpass.getpass(\"Enter API key for Google Gemini: \")\n",
    "llm = init_chat_model(\"gemini-2.5-flash-preview-04-17\", model_provider=\"google_genai\", temperature=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "ce83aa2a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "from langchain.document_loaders import WebBaseLoader\n",
    "from langchain_community.tools import DuckDuckGoSearchResults\n",
    "def download_web_pages(query: str) -> str:\n",
    "    \"\"\"\n",
    "    Performs a web search using the given query, downloads the content of two relevant web pages,\n",
    "    and returns their combined content as a raw string.\n",
    "\n",
    "    This is useful when the task requires analysis of web page content, such as retrieving poems, \n",
    "    changelogs, or other textual resources.\n",
    "\n",
    "    Args:\n",
    "        query (str): The search query.\n",
    "\n",
    "    Returns:\n",
    "        str: The combined raw text content of the two retrieved web pages.\n",
    "    \"\"\"\n",
    "    search_engine = DuckDuckGoSearchResults(output_format=\"list\", num_results=2)\n",
    "    page_urls = [url[\"link\"] for url in search_engine(query)]\n",
    "\n",
    "    loader = WebBaseLoader(web_paths=(page_urls))\n",
    "    docs = loader.load()\n",
    "\n",
    "    combined_text = \"\\n\\n\".join(doc.page_content[:15000] for doc in docs)\n",
    "\n",
    "    # Clean up excessive newlines, spaces and strip leading/trailing whitespace\n",
    "    cleaned_text = re.sub(r'\\n{3,}', '\\n\\n', combined_text).strip()\n",
    "    cleaned_text = re.sub(r'[ \\t]{6,}', ' ', cleaned_text)\n",
    "\n",
    "    # Strip leading/trailing whitespace\n",
    "    cleaned_text = cleaned_text.strip()\n",
    "    return cleaned_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "586df437",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_community.retrievers import WikipediaRetriever\n",
    "\n",
    "def wikipedia_search(query: str) -> str:\n",
    "    \"\"\"\n",
    "    Searches for a Wikipedia articles using the provided query and returns the content of the corresponding Wikipedia pages.\n",
    "\n",
    "    Args:\n",
    "        query (str): The search term to look up on Wikipedia.\n",
    "\n",
    "    Returns:\n",
    "        str: The text content of the Wikipedia articles related to the query.\n",
    "    \"\"\"\n",
    "    retriever = WikipediaRetriever()\n",
    "    docs = retriever.invoke(query)\n",
    "    combined_text = \"\\n\\n\".join(doc.page_content for doc in docs)\n",
    "    return combined_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "fac2cb01",
   "metadata": {},
   "outputs": [],
   "source": [
    "from google import genai\n",
    "from google.genai import types\n",
    "\n",
    "def youtube_viewer(youtube_url: str, question: str) -> str:\n",
    "    \"\"\"\n",
    "    Analyzes a YouTube video from the provided URL and returns an answer \n",
    "    to the given question based on the analysis results.\n",
    "\n",
    "    Args:\n",
    "        youtube_url (str): The URL of the YouTube video, in the format \n",
    "            \"https://www.youtube.com/...\".\n",
    "        question (str): A question related to the content of the video.\n",
    "\n",
    "    Returns:\n",
    "        str: An answer to the question based on the video's content.\n",
    "    \"\"\"\n",
    "    client = genai.Client()\n",
    "    response = client.models.generate_content(\n",
    "        model='models/gemini-2.5-flash-preview-04-17',\n",
    "        contents=types.Content(\n",
    "            parts=[\n",
    "                types.Part(\n",
    "                    file_data=types.FileData(file_uri=youtube_url)\n",
    "                ),\n",
    "                types.Part(text=question)\n",
    "            ]\n",
    "        )\n",
    "    )\n",
    "    return response.text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "4c498a3d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Key 'title' is not supported in schema, ignoring\n",
      "Key 'title' is not supported in schema, ignoring\n",
      "Key 'title' is not supported in schema, ignoring\n"
     ]
    }
   ],
   "source": [
    "tools = [download_web_pages, wikipedia_search, youtube_viewer]\n",
    "\n",
    "# Bind the tools to the agent\n",
    "llm_with_tools = llm.bind_tools(tools)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "10628e0f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import TypedDict, Annotated, Optional\n",
    "from langchain_core.messages import AnyMessage\n",
    "from langgraph.graph.message import add_messages\n",
    "\n",
    "class AgentState(TypedDict):\n",
    "    \"\"\"Agent state for the graph.\"\"\"\n",
    "    input_file: Optional[str]\n",
    "    messages: Annotated[list[AnyMessage], add_messages]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "f1594fb9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.messages import SystemMessage, HumanMessage\n",
    "\n",
    "def assistant(state: AgentState):\n",
    "  sys_msg = SystemMessage(\n",
    "    content=\n",
    "    \"\"\"\n",
    "You are a helpful assistant tasked with answering questions using a set of tools. When given a question, follow these steps:\n",
    "1. Create a clear, step-by-step plan to solve the question.\n",
    "2. If a tool is necessary, select the most appropriate tool based on its functionality. If one tool isn't working, use another with similar functionality.\n",
    "3. Execute your plan and provide the response in the following format:\n",
    "\n",
    "FINAL ANSWER: [YOUR FINAL ANSWER]\n",
    "\n",
    "Your final answer should be:\n",
    "\n",
    "- A number (without commas or units unless explicitly requested),\n",
    "- A short string (avoid articles, abbreviations, and use plain text for digits unless otherwise specified),\n",
    "- A comma-separated list (apply the formatting rules above for each element, with exactly one space after each comma).\n",
    "\n",
    "Ensure that your answer is concise and follows the task instructions strictly. If the answer is more complex, break it down in a way that follows the format.\n",
    "Begin your response with \"FINAL ANSWER: \" followed by the answer, and nothing else.\n",
    "    \"\"\"\n",
    "  )\n",
    "\n",
    "  return {\n",
    "    \"messages\": [llm_with_tools.invoke([sys_msg] + state[\"messages\"])],\n",
    "    \"input_file\": state[\"input_file\"]\n",
    "  }"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "b36bc36c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAANgAAAD5CAIAAADKsmwpAAAQAElEQVR4nOzdB1xT1x4H8JNBQhIIkLCXAqKCKG6qtI7qw1EXTtC2jmfr6mut2qGttVpbbWuf1omrddddreLWJ+6+WieIgiAWEiKbkL14f8gr5fECassN5+ae74dPPuHekEDy48x7z+VWVlYigmhqXEQQGCBBJLBAgkhggQSRwAIJIoEFEkQCCySIdRl05iKZQVNh1lSYzKZKo4EGw1t8AZvLYwlduUJXtk+wANEQi4wjWmlUpsxfVdmp6hKF3t2bJ3TlwOcqlnCNehq8P07O7FIF/POYII6P0zWhUS6h7URh7VwQfZAgIngHrhwpVuRovYKcQ6NEgeFCRGcGnSU7VZX7QCt7qO0+WNqyoyuiA6YHMf1n5dndBfCBdXzZAzmWilIj/INBMRn3mq9IjHsbjNFBvHCwkOOEYgd7IcdV8kR/aI2871if4NZYl/TMDeK/9hVIfHjRPdwRAxxOkr0wUOoT7IxwxdAgHtkgD2olbN+TESm0OrxO1rqLuFVnTJuMbMQ8V44U+YcJGJVCMHRawI1zpUVyPcIS44KYebMCbjv1cbSuybNIfD8YmsWVFhzrQMYFMeVAYYfeTEyhVWhbl0uHixB+mBXEm+dLW3cWC1w4iKmgQZJ5U6VWmhBmmBXEnDR1t8ESxGw9hnveSilDmGFQEHPuqblObA6Hif2z2oJbi1IvlyPMMOhTeXRXHdJWhOzrgw8+OHLkCHp+ffv2lcvliAI8Z7ZXIB8mABFOGBTEkgJDmN2DmJ6ejp6fQqEoK6Ow9mzZwSXvoQbhhClBNOgsRTK9wIWqKddDhw6NHj06Nja2T58+77333pMnT2Bj586doVRbuHBhr1694Fuz2ZyUlDRs2LDu3bsPGDBg6dKlWu1/iyUo/3bt2vX2229369bt4sWLgwYNgo1DhgyZPXs2ooDIzakwD68BRaYEEfqJ1E3837x5c/HixYmJiXv27Pn222+hMPvwww9h+7Fjx+AWcnn48GG4A1HbsmXL9OnTd+/evWDBgpSUlDVr1lifgcvlHjx4sEWLFuvXr+/SpcuSJUtg444dOxYtWoQoIBJz1EozwglTDoxVl5tEblT9sVlZWXw+f/DgwZCnwMBAKOry8/Nhu5ubG9wKhULrHSgFocCDtMH94ODguLi4y5cvW5+BxWI5OztDiWj9ViSqakKIxWLrnUYHbwW8IQgnTAmixYJ4AqqKf6iCIUmTJ08eOnRoTEyMv7+/VCr9/4e5u7snJydD2VlQUGAymTQaDWS0Zm+7du2QvbC5LOiyIJwwpWqGyqi80Iio0bx58++//x7KwlWrVkHDbsKECampqf//sK+//nrTpk3QlNy4cSNU0/Hx8bX3urjY74BqdZmJw2UhnDAliEIxV0PldEJ4eDgUdadPn4ZGHofDmTlzpsFgqP0A6KlAS3H8+PEDBw4MCAjw9PRUqVSoiVDaYv5zmBJEgYjjGcA3GS2IAlD+3blzB+5ABDt16jRt2jTorxQXF1v3Wg+0s1gskEVrYxGo1eoLFy40fAwedUfo6TUW7yA+wgmDxhFhijn7rhpR4MqVK7NmzTp79mxeXt6DBw+gU+zn5+fr68uvduPGDdgIjchWrVodPXoUHpOZmQlFJoz1KJXKnJwcaC/WeULopsDtpUuXsrOzEQUyblT4NMPrIFkGBTEkSvQolZIgTpo0CRp8K1asGDly5IwZM6AkW7lyJSQPdkF78cyZMzBkA0OGn3zyCRSK0EacO3duQkICPBLC+vrrr0Pfpc4TRkREwFjj8uXLv/rqK0SBnHuakDb2HttvGIOO0DboLcmb8+OnByBm++2BJvuuqtdIb4QTBpWIPD7bO5B/41wpYrYrPxW16eaGMMOslR66D5KumZNV35mj0J94+eWXbe6CLjCPx7O5KyQkBMZuEDVu3boFrUn0nL8SdOFhhMjmLmgdevjwvALw6qkgBp48dftCmcVS2aGX7SxWVFTY3K7X6+FTtzb76mCz2RTNfwDox9TMRzfKr5S8Wf5SvJdY4oQww8Sz+I59l9+qsyu9VuRoFDj/4Uw8SnTgJL+rR4sLcnWISVIOFEr9eNj++zH0vGb4qw98m/fCK1K6r3TzjCCF3sH8iC5ihCuGHjcPTauRM4N+OVWadg27g+YbF/zLHV4nE0u4OKcQkUWYriYXPUrTQG+6eSReA7yN4vrpkrRryt6jvYNb4V7wk2XpULFcf+VoMV/ADggXwHyD0JX2Q1qFefrH6epfz5a2e8k9ZoCEzcbrQBubSBD/S5alffBLxaM0tYePk8SHJ3LjisRckRvHjNeBzLZB0pQlRrXSXGmpzLihchaxW0S7QApxO+iwASSIdSlytIUyg7rcpFaaoCzRVDRmEmFQMDs7u02bNqhRuUq4lZaqYy5dPbj+YQJXD+yGCZ+KBNGusrKy5s6du3fvXkT8L7KYO4EFEkQCCySIBBZIEAkskCASWCBBJLBAgkhggQSRwAIJIoEFEkQCCySIBBZIEAkskCASWCBBJLBAgkhggQSRwAIJIoEFEkQCCySIBBZIEAkskCASWCBBJLBAgkhggQTRrlgslrc3XotXY4IE0a4qKyv//xoCBCJBJDBBgkhggQSRwAIJIoEFEkQCCySIBBZIEAkskCASWCBBJLBAgkhggQSRwAIJIoEFEkQCCySIBBZIEAkskAv+2ENCQoJWq4W32mg0lpSU+Pr6wn29Xn/y5ElEVGPoZXLtbMiQIQqFQi6XFxYWms1mmUwG98VirK9ba2ckiPaQmJgYGBhYewubzY6NjUXE70gQ7YHFYo0YMYLD4dRsCQ4OHjNmDCJ+R4JoJ6NHj64pFCGXPXv29PPzQ8TvSBDthMvlQgXN5/PhPiRy5MiRiKiFBNF+hg8fHhAQAP3l7t27k+KwDsaNI2pV5mK5wWCwoKYwLG7KiRMnesckZKeqUROodHHnSnx4XCfsCiAGjSOaDJZTO57IsrRBLUUGXdMEsWk58dhlhQazydKyk2vXfhKEE6YEUa81H1gp6zLA07eZEDHe9VNFHC7qEe+JsMGUNuKeZbm9RvuRFFp1jvOsrGRdOVqMsMGIIKZeKQ+NdnWVOCHidx37SOXZWpXShPDAiCAqHuuEYpLCumA4s1RhQHhgRK8ZuiZiKQliXRI/vrrMjPDAiCDq1JZKJvaSnwL+P80WXLqq5HhEAgskiAQWSBAJLJAgElggQSSwQIJIYIEEkcACCSKBBRJEAgskiAQWSBAJLJBzVqiVnf2wd5/Od+/eQkSDSBCp5enlPfOdD/39Axt4zKNHWQljB6G/ZtjwvvkKOaItUjVTS+wqHjrkKWeOZmSko7/myRNFeXkZojMSRNvuP7i3adPqzIcPDAZ982ahf//7jM6dYqy7ko8d2n9gV36+jM93jm7X8a0Zc7y9ferbDlXz399IWLliU9u27SEuSetX3Lr9q0aj9vX1Hzli7OBBw7dsXb9120b4cajBZ0yfBRvre+nDP+3/fkvSks9XrFz9dW5ujtjV7dVX/z5wwNCbt67Pmj0VHjB23JCxiRPemPwWoiFSNdug1+s/+PAfTjzesq/XrluzLbJNu/mfzC4srLqq6J07N5d9s3jE8MTNm/Ys+eLbcmXZws8+bGB7bV99vbCouPCLz1d8t3nv8PiEFd8u/eX6tYQx44cPT4DIHjp4ZvCgEQ28NJfLVatV23ZsWrjgqyOHz8fFvbJ8xRLY1Taq/Sfzl8AD1ifteO3VyYieSIloA4fDWf7NeqnU083NHb6dNGHawYO7U9Nu9+71t0c5WXw+v3+/wRCLAP/ABfOXKp7kw2Pq215b9qOH8cPGRLRuA/cDhoxsGd7ax8fP2dmZz+OzWCzra5lMpvpe2rp3bMIEawE8oP9QKEqzsjJeeOFFoVAEW1xdxfBsiJ5IEG2AMBlNxpWrvnqYlaFSVVjPuFUqy+G2Q/vOEJq3Z06GOrFTpxg/X3+JRNrA9tq6d+vxw+4t8IQxMbHt2naIiIh6rpe2Cg0Nt96B2MFthaoCOQRSNduQl/fb7DlTDQbDvLmfbUjauX7djppdwcHNV6/8HnrBGzaugjbZ9Lcm3EtPbWB7be/OnDt50ow7d27MeW96/Ii+8Ego4Z79pa2sq+f8wVFOSyclog3n/nXKbDZ//NHn1k8dOhm194aFhX88bzE8AEYHN3+/dt5HM/fuPsbj8Wxur/2DUNqNGJEIXyUlxadOJ2/+bq27u8foUa8++0s7MFIi2mA0GqDnW1P2nD7zR57S01PT0u6g6nZk+/adJk2cBuMmEKz6ttf8oEqlOn3muLUIhFo7YczrkZFtoU/97C/9VLRetIME0YaI1lEQo+MnfiouLjp0eN/9B2lQdGVVNdpUP//7ykfzZ6VcOCuT58EIC/QkfH38fHx869te85zQgly56kvoWcNeeb7szNkTMHwIkYVdLi6u8ELQ71Yo8ht46QZ+YXF1e/HatUv0HdMmVbMN3bv3GDP6tfUbVq5d98+YrrEfvr9w/4GdP+zeymazYXTQZDImJa2AgRiRyCUqKnrpkpUQslfHTbK5veY5RSLRl0tXwwDhrNlToAkI44gTJ0yFXjbs6vNy/5Onjs5+bxqMAsLG+l46PLx1fb9wy5YRXbt2X5e0XCbP/ceMOYiGGLEI08HVsrYvSXybCxBRy5UjBYEtnNu8gMWa8qREJLBAgkhggQSRwAIJIoEFEkQCCySIBBZIEAkskCASWCBBJLBAgkhggQSRwAIJIoEFEkQCC4wIopsn12EOqW9EfGc2j89CeGDEgbECEadQpkfE/5I91Eh8eAgPjAhiszaiskJcLrGECZ3GLHDhSP35CA+MCGJAqEDizb12tAARvzuzQ/7iMIyuTsqg6zVfP1NakKv3DxN6BjhjeOVsO2CxKpWlpooiw8/HixLmBHlgUy8jRgUR5KSrM35V6dTmkloXQzQYDGw2m8u1R78N3m2jwcDjU1UhajQaFovF/h2Hw6m9ly/kQO/EL9S5a5yEy8PrX5FZQazDbDY/fPjw/PnzU6ZMQXaRlZU1d+7cvXv3ImrMmzfv+PHjEEEPDw8XFxcejxcYGNiiRYvp06cjvDE3iNu2bXvllVdEIpE914upqKj49ddfe/Xqhahx//79d955p7j4j/OpK6v5+fklJycjjDH0vOYDBw6UlpZKpVI7r1rk6upKXQpB69atIyMja2+Bmhr+2TBPIWJgEM+dOwe3sbGxUHIguyssLFy7di2iUmJiokQiqfkWqumLFy8i7DEriEuXLs3OzoY7vr6+qCkolUpokiIqde3aNSwsrObb0NDQw4cPI+wxJYjQKYHbfv36TZ7clEtZent726HfMGrUKLG46rT5gICA3bt33759+4svvkB4Y0RnBTqqffr06du3L2KMcePGQTPg1KlT1m+hTfzjjz/u2LED4crBg6hSqcrKyu7duxcXF4cwAOHYt29fkwympKenv/baa1u3bm3Tpg3CjyNXzZ999llR8Y8BRAAAD1BJREFUUREMpGGSQmSXNmJ9IiIirl+//uWXX+7fvx/hx2GDCJVR27ZtmzdvjnBinzZiA2D0NDMzc+HChQgzDlg1b9iw4c0334SJO5hXQIQtP/30086dO7dv347PW+RoJeInn3zi7l61Hj+eKbTDOOKzGDJkyOeff96zZ89bt3C5NpvjBDElJQVu33777dGjRyNcNWEbsQ6YgL569eqqVat27dqFMOAgQYTRCuvyrJ6eGB1j9/+avI1Yx+bNm/Pz8z/++GPU1GjfRszLy4NPF+ZLYJoVEX/K8ePHN27cCE1GmJVGTYTGJaLJZHrjjTd0Oh00B+mSQkzaiHUMGDBg+fLlcPvLL7+gJkLXIEJBfvny5WnTpkFbB9EHPm3EOpo1a3bhwgWoqWHEGzUF+gXRYrG8++67EETo9HXs2BHRCm5txDqSkpLKy8vff/99ZHf0ayMuWLAAJo579OiBCGqcPXt2xYoV0GS0DoTZB52CCLXG+PHjEZ014Vzzc5HL5TAxvWjRotjYWGQXtKma+/fvHxUVhWgO2zZiHf7+/lAu7tmzZ9OmTcguaFAi3rhxA9qC0Dum78WIa1B9zkqjW7duXUZGBvSpEcWwLhHVanW/fv2sx3g6QAoR9eesNDoYl4iPj4dPoaCA2uUJ8C0RVSoVDPp7eHhgPlnyXOjSRqyjqKgImoxLly6Njo5G1MC0RDx48CDUyOHh4Y6UQlRdrt+8eRPRDXwKMPuyZs0amUyGqIHpsnSZmZlGoxE5HKiaYWZFq9XCzDjtGhtQNEAnBlED0xJx6tSpgwYNQo7IyclJIBBAhxQaHog+7t+/36pVq9oX/m1cmAbRzc2tCSfg7QAGRGfOnInoIz09PSIiAlEG0yCuX7/+6NGjyKFBoQi3ubm5iA7u3btXZw2JxoVpEGHGE8ZuEAOkpKTAyCLCHtUlIqbDNxBELpfr2LVzjcWLF+NwaGrDOnfufP36dUQZ0kZsetYUXrt2DeEK6mVKi0NE2oj4yMvLO3nyJMIS1fUyIm1EfIwcOVKpVCIsUd1TQdgGccqUKY46jtiAUaNGwe0PP/yAMMPcEpFRbcQ6pFIpVquCWCwWmOiC0WxEJdJGxE5cXBxWK6XYoV5GpI2IJxgrQdWrViAM2KFeRqSNiLP4+PidO3eipmafIGJ69A20ERHjdejQwcfHBzU1qJoTExMRxUgbEWvWw66gaERNxGQyPXr0KDw8HFGMtBFpICkpafv27bW39OvXD9mFfXoqiMw104WhGofDEQgEAwcOfPLkCWTRDku079mz5/Hjx3Y45Z60EemBV+3FF1+Ed6agoIDFYqWlpZWUlNS+pAoVoETs0qULoh5pI9IJjHVDWWi9Dym8dOkSoph9usyItBFpZMSIEbXPXdJoNKdPn0ZUgsZAbm5u7csHUQfTqhnGEe1z3Vq6gBTm5OSg6mvrWbfAHdiSnZ0dGhqKqGG3ngoic810ceDAgWHDhgUHB3t4eFgvOAoboZqmtHa2W72MsC0RoY0YEBBAJldqmz9/PtzevXv3YrXi4mJlmfb8mZ/jB49F1Mi4l9u+ffuKUhP6s+D/RSx5pozhNXzTt2/f0tJS669krYPgvq+v77FjxxBRy/XTJXculVayTEadxVkgQNSA0WwYMPorp5BK/PiyTE2LaFHMQKlY4tTAI/EqEbt163b8+PHafzmbzR48eDAiajmxVeEicRowKdjF3Qlhz2S0lBUY9n2bN3xGgId3vdccwauNmJCQUGd2NTAw0A4TnTRyfIvCw5cf3UNKixQCrhPbM8B59KyQH9fIlCX1rt6BVxDbtGlTexFEKBr79+9vz3VLMZdzT80TcCJf8EA01HuM37VjJfXtxa7XPH78+JrZAigOcb56j/0V5Oqd+HRdf9/Dh//wVkV9e7H7q2DgKjo62jpCAcUhjFYg4nd6jdnTj4/oicNlBbcSlRUabO7F8d9r4sSJMJcFneUxY8Ygoha10myi8xppJU8M9fXB/2qvWZ6lKS8yqStMGqXZYoYOvwU1AulLrafDgPb143oYtUV/GV/AZiGWUMyBL6k/38ufroWKA/uTQXycrs64ocpOVXv4CiorWRwnDhu+OJzGGpOMiu4NtxUa1ChUWmQxmc0yk9mgM+rKjTpzWDtR686uPs0cYTlkx/DcQcx/pL3wY7GTkMfi8sO6eXCdOIhuDFpTcZE65VCpQIheGiZ19yKXdW56zxfEMz8UyrN10hCJyIPGZQlPwJUEVR3vqCxQH1glj+jq2n2QFBFN6lk7KzA+vmXRY52ZH9zRn9YprE3sLQrrFlSgYMNYKyKa1DMF0Wyq3DA32y/Sx0XqgEfEuAeIndzEu5fRY8FMR/X0IFoslevez4rsE8IX0WNO6U9wkQrFAZKtix8jook8PYg7l/wW3j0AOTqhu7MkyD15M50WWHckTwni+QNF7kHufBEj+pWu3i5GxL+VUoYIu2soiMVy/aNUtauXC2IMd3+3S4eKaHfpYAfQUBAvHCr2DKH2bEUM+bb0uHioGBH2VW8QFTlak5nt6iVEWLqdenbO/Bi1uvGrUc/m7rJsvV5rRkS1ofF9tm2n/GK59Qbx4W01zNwhZmKxc9IaaXqxqX268IMTJ48g7NUbxKw7aldvTItDqgklosxbKuQQMjLSER3YnuIrLTAIXJ2o6yznye8fO70Wbs0mY3hYlyED3pV4+MH2K/8+cPLshkmvfnP42D8LCnOEQrc+PSfGdBoCu8xm0+Fjy2/cOVFpsUS2erFFaGdEGbG3MD8N03XVn0vvPlXv0pdfLVyz9psjh8/D/eRjh/bu2yGX5wkEwpiu3adNfVci+e/0ZgO7asBj9h/YlZ8v4/Odo9t1fGvGHG/vxlk4z3aJqCoz6bSNckCXDaVliqTvprNZ7GmT1k6dtEajUa7f8pbRVHW8JIfN1elUZ1K+ez1hyWcfne3UfuDBI1+WlVddsvrcha0/Xz80ZMDMd6dvC2neHh6DKMNisVSlRrXyz59GiYm9u6vOfvzHW+/t2H4Y7pw6lbzsm8Vxf3vlu017Fn36dUbm/bnz3rEOETSwq8adOzfhMSOGJ27etGfJF9+WK8sWfvYhaiS2g6hRmjmUHVZz9ZeD8FGPG/WZn0+LoIDIxJGflpTK7qads+41W0y9X3rd3c0H0tC142AoCOWKTNj+6+3jUZE9YYunNKh71xEtw2IQlXjOHHU57YMoFlcd2yGEmqX6zr79O2Nje44bOzEoqFn79p0goBC41NTbDe+q8Sgni8/n9+83OMA/MDIiasH8pTOmz0aNpJ4gVpg4PKrONP0tNzU4IFIgcLV+6+HuK/EIkOVn1DzA3+e/y0IKBWK41ekqTCZjUXEupLbmMcGBbRCVnAQcDf1LxNpMJlNWdmZkRNuaLa1aVb2fD7MyGthV+xk6tO8MpcPbMycfTf4xXyGHihviiBpJvWljIaoGdbU6tVzx4INPX6zZYjYblRVFNd86Of3PEdRQQRgM2qrt3D+28/nUdqQs5qoaGjkQrU4L76RQ+MdhK0JB1Xuo1Woa2FX7GYKDm69e+f0Pe7Zu2Liq4p+fR0REQRuxsbJoO4hCMdds1CFqODuLQoLbjxz6P80LHq+hYDnxqg480+r/6MlqtRWISmaDWSR2qFWgBM4CNput0fyxxpq6+r5I5NLArjpPEhYW/vG8xWaz+e7dW5u/Xzvvo5n79hx3cmqEYT7bVbPQlWM2UjWi2ywoqqgkVyoJ9PZqbv2Cwkfs6tnAjzhxeR7ufvnVjUWrjKx/IyoZdGahmH4Hn9tk7XNwudwWYS3vpt6q2X4v7Q6qroUb2FX7edLTU9Oqt3M4HGhHTpo4rby8DL5QY7AdRLGE68SjqmJ6oXO8Xq/ZfXCRTP6gsOi30//avGx1Yq4sreGf6tA2LvVeyrXrh/IVD1Mu75TnZyDKWCyVLu5cBygR+dVu37mR+fABNARHjXr12rVLMEajUOTfvHV91Zpl0dEdW1enrYFdNX7+95WP5s9KuXBWJs+DJzx4cLevj59U6okag+332s2TZ9KZdRUGZ9fGH0qEIcOpk9Ymn1q9ZtObbDbH1zts4rhlzYLaNvxTf3t5slpTdvTESkulJaJl7Ctxb23bMxfuIwoon6g9vB1kVikxYcLuPVuvXr24Y/uhvn366/U6SNvGTauh2n0xtteUKe9YH9bArhqvjpsEvcakpBVFxYXwmKio6KVLVrIaqSVd72pgV5OL83IqvUKZeH67PK2gSx+X8A6uCDMntir8w1xC2tL1eKgfVz0eOtXfzdPGP3m9U3wtokWVJocav3h2LJY5pA1ZJtSu6m0GeQU6C4SV5U/Ubj62PxKY8IC2nc1dznwXnd72XK2PV8g/3mzMQzk+/rxPfbssZhObY+MPhDHIN8evrO+nCrNLQyIFXB5dl5ihqYba4z2Ge+5fIasviK4uklnTt9vcZTTq64wF1uA09hE99f0OwGDU82z9GlxuvQ1fi9lS+Kh81Ax7LF9O1NZQEN2kThExLsWFFa5eNlpLHA5X4uGPmlrj/g7K/PJeoxqnG0g8l6dUQN0HeWqKVJoyqga3sVKer3QRWSJjyLWGmsDTW0JjZgX+dlNh1Dl4x6VModKWqPqO9UZEU3imJvmUL0MzL+c6cLlYrlAhnTphThAimsgzBREGLacva6GUlSifUDvD2yRKc0t5LO2waU3f3mWy5xikgAJDKjVnX8tTFjjIxclKZcr75x+HtOIOmOCLiCb1fNOpsYOlkTGuF34sLsrSVHKcxF4iOq5DolXqKwo1Fr3e099p4KfN+AIHObiB1p57Xt/Dmzd0ip8iR5d5S5V15wlfyLVYWBwep3qtTi7C8tR0NptlNJgsBpPJYDZojXwBO7y9S8uOXmRlRHz8yQNMfJs7w9dLwzxLFIbyoqrTO9TlJrPJbDbhGESeM5vNYYvEQqGY4xnAc3Fj6mmyGPurRzpJfHnwhQjiryGXoqUTkRuX1oseSHxhxtV2nUmm9ulEIGIXyfSInowGS16G2s3Tdv1JgkgnPs2cjXq6LspTotA3cIgnCSKdBLUUsljo5jlaLlZ2bpc8dki9i+bjdb1m4llcOFhoNFaGtRNL/Wmwqj6MqJQX6v+1W/HaR8Gi+scrSBBpKfVqedoVpV5j1mmoWhmmUXgF8ssKDCFtRbGDPRu+nCUJIo3BR2fQYR3ESkuls+iZJq5IEAkskHFEAgskiAQWSBAJLJAgElggQSSwQIJIYOE/AAAA//9IOO73AAAABklEQVQDAFPPIzkUheU2AAAAAElFTkSuQmCC",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "from IPython.display import Image, display\n",
    "from langgraph.graph import StateGraph, START\n",
    "\n",
    "# Build the state graph\n",
    "# The graph\n",
    "builder = StateGraph(AgentState)\n",
    "\n",
    "# Define nodes: these do the work\n",
    "builder.add_node(\"assistant\", assistant)\n",
    "builder.add_node(\"tools\", ToolNode(tools))\n",
    "# Define edges: these determine how the control flow moves\n",
    "builder.add_edge(START, \"assistant\")\n",
    "builder.add_conditional_edges(\n",
    "    \"assistant\",\n",
    "    tools_condition,\n",
    ")\n",
    "builder.add_edge(\"tools\", \"assistant\")\n",
    "react_graph = builder.compile()\n",
    "# Show the butler's thought process\n",
    "display(Image(react_graph.get_graph(xray=True).draw_mermaid_png()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "ead8e45f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "ed21ed00ada141289cbee25b93029435",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import login\n",
    "\n",
    "# This will prompt you for your token\n",
    "login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "b4b1299d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Logged in as: SpyFox\n"
     ]
    }
   ],
   "source": [
    "from huggingface_hub import whoami\n",
    "\n",
    "info = whoami()\n",
    "username = info[\"name\"]\n",
    "\n",
    "print(f\"Logged in as: {username}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "45e5f7ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "DEFAULT_API_URL = \"https://agents-course-unit4-scoring.hf.space\"    \n",
    "api_url = DEFAULT_API_URL\n",
    "questions_url = f\"{api_url}/questions\"\n",
    "submit_url = f\"{api_url}/submit\"\n",
    "files_url = f\"{api_url}/files\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "af2e50c9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fetching questions from: https://agents-course-unit4-scoring.hf.space/questions\n",
      "Fetched 20 questions.\n",
      "{'task_id': 'cabe07ed-9eca-40ea-8ead-410ef5e83f91', 'question': \"What is the surname of the equine veterinarian mentioned in 1.E Exercises from the chemistry materials licensed by Marisa Alviar-Agnew & Henry Agnew under the CK-12 license in LibreText's Introductory Chemistry materials as compiled 08/21/2023?\", 'Level': '1', 'file_name': ''}\n"
     ]
    }
   ],
   "source": [
    "import requests\n",
    "print(f\"Fetching questions from: {questions_url}\")\n",
    "try:\n",
    "    response = requests.get(questions_url, timeout=15)\n",
    "    response.raise_for_status()\n",
    "    questions_data = response.json()\n",
    "    if not questions_data:\n",
    "          print(\"Fetched questions list is empty.\")\n",
    "    print(f\"Fetched {len(questions_data)} questions.\")\n",
    "except requests.exceptions.RequestException as e:\n",
    "    print(f\"Error fetching questions: {e}\")\n",
    "except requests.exceptions.JSONDecodeError as e:\n",
    "      print(f\"Error decoding JSON response from questions endpoint: {e}\")\n",
    "      print(f\"Response text: {response.text[:500]}\")\n",
    "except Exception as e:\n",
    "    print(f\"An unexpected error occurred fetching questions: {e}\")\n",
    "\n",
    "print(questions_data[7])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "3c6996e6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running agent on 20 questions...\n",
      "Question: How many studio albums were published by Mercedes Sosa between 2000 and 2009 (included)? You can use the latest 2022 version of english wikipedia.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\wasyl\\AppData\\Local\\Temp\\ipykernel_22488\\81366616.py:19: LangChainDeprecationWarning: The method `BaseTool.__call__` was deprecated in langchain-core 0.1.47 and will be removed in 1.0. Use :meth:`~invoke` instead.\n",
      "  page_urls = [url[\"link\"] for url in search_engine(query)]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Answer: 3\n",
      "Question: In the video https://www.youtube.com/watch?v=L1vXCYZAYYM, what is the highest number of bird species to be on camera simultaneously?\n",
      "Answer: 3\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[30], line 28\u001b[0m\n\u001b[0;32m     26\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAnswer: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00msubmitted_answer\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m     27\u001b[0m     answers_payload\u001b[38;5;241m.\u001b[39mappend({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtask_id\u001b[39m\u001b[38;5;124m\"\u001b[39m: task_id, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msubmitted_answer\u001b[39m\u001b[38;5;124m\"\u001b[39m: submitted_answer})\n\u001b[1;32m---> 28\u001b[0m     time\u001b[38;5;241m.\u001b[39msleep(\u001b[38;5;241m10\u001b[39m)  \u001b[38;5;66;03m# Sleep for 10 seconds to avoid rate limiting\u001b[39;00m\n\u001b[0;32m     29\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[0;32m     30\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError running agent on task \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtask_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00me\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[1;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "import time\n",
    "\n",
    "def extract_after_final_answer(text):\n",
    "    keyword = \"FINAL ANSWER: \"\n",
    "    index = text.find(keyword)\n",
    "    if index != -1:\n",
    "        return text[index + len(keyword):]\n",
    "    else:\n",
    "        return \"\"\n",
    "\n",
    "answers_payload = []\n",
    "\n",
    "print(f\"Running agent on {len(questions_data)} questions...\")\n",
    "for item in questions_data:\n",
    "    task_id = item.get(\"task_id\")\n",
    "    question_text = item.get(\"question\")\n",
    "    print(f\"Question: {question_text}\")\n",
    "    messages = [HumanMessage(content=question_text)]\n",
    "\n",
    "    if not task_id or question_text is None:\n",
    "        print(f\"Skipping item with missing task_id or question: {item}\")\n",
    "        continue\n",
    "    try:\n",
    "        submitted_answer = react_graph.invoke({\"messages\": messages, \"input_file\": None})\n",
    "        submitted_answer = extract_after_final_answer(submitted_answer['messages'][-1].content)\n",
    "        print(f\"Answer: {submitted_answer}\")\n",
    "        answers_payload.append({\"task_id\": task_id, \"submitted_answer\": submitted_answer})\n",
    "        time.sleep(10)  # Sleep for 10 seconds to avoid rate limiting\n",
    "    except Exception as e:\n",
    "        print(f\"Error running agent on task {task_id}: {e}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "8e47414a",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Agent finished. Submitting 20 answers for user 'SpyFox'...\n"
     ]
    }
   ],
   "source": [
    "submission_data = {\"username\": username.strip(), \"agent_code\": \"https://huggingface.co/spaces/SpyFox/agents_final_test/tree/main\", \"answers\": answers_payload}\n",
    "status_update = f\"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'...\"\n",
    "print(status_update)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "a086f73f",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Submitting 20 answers to: https://agents-course-unit4-scoring.hf.space/submit\n",
      "Submission successful.\n",
      "Submission Successful!\n",
      "User: SpyFox\n",
      "Overall Score: 45.0% (9/20 correct)\n",
      "Message: Score calculated successfully: 9/20 total questions answered correctly (20 valid tasks attempted). High score updated on leaderboard.\n"
     ]
    }
   ],
   "source": [
    "print(f\"Submitting {len(answers_payload)} answers to: {submit_url}\")\n",
    "\n",
    "response = requests.post(submit_url, json=submission_data, timeout=60)\n",
    "response.raise_for_status()\n",
    "result_data = response.json()\n",
    "final_status = (\n",
    "    f\"Submission Successful!\\n\"\n",
    "    f\"User: {result_data.get('username')}\\n\"\n",
    "    f\"Overall Score: {result_data.get('score', 'N/A')}% \"\n",
    "    f\"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\\n\"\n",
    "    f\"Message: {result_data.get('message', 'No message received.')}\"\n",
    ")\n",
    "print(\"Submission successful.\")\n",
    "print(final_status)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}