|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re |
|
import torch |
|
from typing import Tuple |
|
from pathlib import Path |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
from sparktts.utils.file import load_config |
|
from sparktts.models.audio_tokenizer import BiCodecTokenizer |
|
from sparktts.utils.token_parser import LEVELS_MAP, GENDER_MAP, TASK_TOKEN_MAP |
|
|
|
|
|
class SparkTTS: |
|
""" |
|
Spark-TTS for text-to-speech generation. |
|
""" |
|
|
|
def __init__(self, model_dir: Path, device: torch.device = torch.device("cuda:0")): |
|
""" |
|
Initializes the SparkTTS model with the provided configurations and device. |
|
|
|
Args: |
|
model_dir (Path): Directory containing the model and config files. |
|
device (torch.device): The device (CPU/GPU) to run the model on. |
|
""" |
|
self.device = device |
|
self.model_dir = model_dir |
|
self.configs = load_config(f"{model_dir}/config.yaml") |
|
self.sample_rate = self.configs["sample_rate"] |
|
self._initialize_inference() |
|
|
|
def _initialize_inference(self): |
|
"""Initializes the tokenizer, model, and audio tokenizer for inference.""" |
|
self.tokenizer = AutoTokenizer.from_pretrained(f"{self.model_dir}/LLM") |
|
self.model = AutoModelForCausalLM.from_pretrained(f"{self.model_dir}/LLM") |
|
self.audio_tokenizer = BiCodecTokenizer(self.model_dir, device=self.device) |
|
self.model.to(self.device) |
|
|
|
def to(self, device: torch.device): |
|
self.device = device |
|
self.model.to(self.device) |
|
self.audio_tokenizer.to(self.device) |
|
|
|
def process_prompt( |
|
self, |
|
text: str, |
|
prompt_speech_path: Path, |
|
prompt_text: str = None, |
|
) -> Tuple[str, torch.Tensor]: |
|
""" |
|
Process input for voice cloning. |
|
|
|
Args: |
|
text (str): The text input to be converted to speech. |
|
prompt_speech_path (Path): Path to the audio file used as a prompt. |
|
prompt_text (str, optional): Transcript of the prompt audio. |
|
|
|
Return: |
|
Tuple[str, torch.Tensor]: Input prompt; global tokens |
|
""" |
|
|
|
global_token_ids, semantic_token_ids = self.audio_tokenizer.tokenize( |
|
prompt_speech_path |
|
) |
|
global_tokens = "".join( |
|
[f"<|bicodec_global_{i}|>" for i in global_token_ids.squeeze()] |
|
) |
|
|
|
|
|
if prompt_text is not None: |
|
semantic_tokens = "".join( |
|
[f"<|bicodec_semantic_{i}|>" for i in semantic_token_ids.squeeze()] |
|
) |
|
inputs = [ |
|
TASK_TOKEN_MAP["tts"], |
|
"<|start_content|>", |
|
prompt_text, |
|
text, |
|
"<|end_content|>", |
|
"<|start_global_token|>", |
|
global_tokens, |
|
"<|end_global_token|>", |
|
"<|start_semantic_token|>", |
|
semantic_tokens, |
|
] |
|
else: |
|
inputs = [ |
|
TASK_TOKEN_MAP["tts"], |
|
"<|start_content|>", |
|
text, |
|
"<|end_content|>", |
|
"<|start_global_token|>", |
|
global_tokens, |
|
"<|end_global_token|>", |
|
] |
|
|
|
inputs = "".join(inputs) |
|
|
|
return inputs, global_token_ids |
|
|
|
def process_prompt_control( |
|
self, |
|
gender: str, |
|
pitch: str, |
|
speed: str, |
|
text: str, |
|
): |
|
""" |
|
Process input for voice creation. |
|
|
|
Args: |
|
gender (str): female | male. |
|
pitch (str): very_low | low | moderate | high | very_high |
|
speed (str): very_low | low | moderate | high | very_high |
|
text (str): The text input to be converted to speech. |
|
|
|
Return: |
|
str: Input prompt |
|
""" |
|
assert gender in GENDER_MAP.keys() |
|
assert pitch in LEVELS_MAP.keys() |
|
assert speed in LEVELS_MAP.keys() |
|
|
|
gender_id = GENDER_MAP[gender] |
|
pitch_level_id = LEVELS_MAP[pitch] |
|
speed_level_id = LEVELS_MAP[speed] |
|
|
|
pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>" |
|
speed_label_tokens = f"<|speed_label_{speed_level_id}|>" |
|
gender_tokens = f"<|gender_{gender_id}|>" |
|
|
|
attribte_tokens = "".join( |
|
[gender_tokens, pitch_label_tokens, speed_label_tokens] |
|
) |
|
|
|
control_tts_inputs = [ |
|
TASK_TOKEN_MAP["controllable_tts"], |
|
"<|start_content|>", |
|
text, |
|
"<|end_content|>", |
|
"<|start_style_label|>", |
|
attribte_tokens, |
|
"<|end_style_label|>", |
|
] |
|
|
|
return "".join(control_tts_inputs) |
|
|
|
@torch.no_grad() |
|
def inference( |
|
self, |
|
text: str, |
|
prompt_speech_path: Path = None, |
|
prompt_text: str = None, |
|
gender: str = None, |
|
pitch: str = None, |
|
speed: str = None, |
|
temperature: float = 0.8, |
|
top_k: float = 50, |
|
top_p: float = 0.95, |
|
) -> torch.Tensor: |
|
""" |
|
Performs inference to generate speech from text, incorporating prompt audio and/or text. |
|
|
|
Args: |
|
text (str): The text input to be converted to speech. |
|
prompt_speech_path (Path): Path to the audio file used as a prompt. |
|
prompt_text (str, optional): Transcript of the prompt audio. |
|
gender (str): female | male. |
|
pitch (str): very_low | low | moderate | high | very_high |
|
speed (str): very_low | low | moderate | high | very_high |
|
temperature (float, optional): Sampling temperature for controlling randomness. Default is 0.8. |
|
top_k (float, optional): Top-k sampling parameter. Default is 50. |
|
top_p (float, optional): Top-p (nucleus) sampling parameter. Default is 0.95. |
|
|
|
Returns: |
|
torch.Tensor: Generated waveform as a tensor. |
|
""" |
|
if gender is not None: |
|
prompt = self.process_prompt_control(gender, pitch, speed, text) |
|
|
|
else: |
|
prompt, global_token_ids = self.process_prompt( |
|
text, prompt_speech_path, prompt_text |
|
) |
|
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.device) |
|
|
|
|
|
generated_ids = self.model.generate( |
|
**model_inputs, |
|
max_new_tokens=3000, |
|
do_sample=True, |
|
top_k=top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
) |
|
|
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids) :] |
|
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
|
|
predicts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
pred_semantic_ids = ( |
|
torch.tensor([int(token) for token in re.findall(r"bicodec_semantic_(\d+)", predicts)]) |
|
.long() |
|
.unsqueeze(0) |
|
) |
|
|
|
if gender is not None: |
|
global_token_ids = ( |
|
torch.tensor([int(token) for token in re.findall(r"bicodec_global_(\d+)", predicts)]) |
|
.long() |
|
.unsqueeze(0) |
|
.unsqueeze(0) |
|
) |
|
|
|
|
|
wav = self.audio_tokenizer.detokenize( |
|
global_token_ids.to(self.device).squeeze(0), |
|
pred_semantic_ids.to(self.device), |
|
) |
|
|
|
return wav |