|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" This implementation is adapted from github repo: |
|
https://github.com/lawlict/ECAPA-TDNN. |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import sparktts.modules.speaker.pooling_layers as pooling_layers |
|
|
|
|
|
class Res2Conv1dReluBn(nn.Module): |
|
""" |
|
in_channels == out_channels == channels |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
scale=4, |
|
): |
|
super().__init__() |
|
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) |
|
self.scale = scale |
|
self.width = channels // scale |
|
self.nums = scale if scale == 1 else scale - 1 |
|
|
|
self.convs = [] |
|
self.bns = [] |
|
for i in range(self.nums): |
|
self.convs.append( |
|
nn.Conv1d( |
|
self.width, |
|
self.width, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
bias=bias, |
|
) |
|
) |
|
self.bns.append(nn.BatchNorm1d(self.width)) |
|
self.convs = nn.ModuleList(self.convs) |
|
self.bns = nn.ModuleList(self.bns) |
|
|
|
def forward(self, x): |
|
out = [] |
|
spx = torch.split(x, self.width, 1) |
|
sp = spx[0] |
|
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): |
|
|
|
if i >= 1: |
|
sp = sp + spx[i] |
|
sp = conv(sp) |
|
sp = bn(F.relu(sp)) |
|
out.append(sp) |
|
if self.scale != 1: |
|
out.append(spx[self.nums]) |
|
out = torch.cat(out, dim=1) |
|
|
|
return out |
|
|
|
|
|
""" Conv1d + BatchNorm1d + ReLU |
|
""" |
|
|
|
|
|
class Conv1dReluBn(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.conv = nn.Conv1d( |
|
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias |
|
) |
|
self.bn = nn.BatchNorm1d(out_channels) |
|
|
|
def forward(self, x): |
|
return self.bn(F.relu(self.conv(x))) |
|
|
|
|
|
""" The SE connection of 1D case. |
|
""" |
|
|
|
|
|
class SE_Connect(nn.Module): |
|
|
|
def __init__(self, channels, se_bottleneck_dim=128): |
|
super().__init__() |
|
self.linear1 = nn.Linear(channels, se_bottleneck_dim) |
|
self.linear2 = nn.Linear(se_bottleneck_dim, channels) |
|
|
|
def forward(self, x): |
|
out = x.mean(dim=2) |
|
out = F.relu(self.linear1(out)) |
|
out = torch.sigmoid(self.linear2(out)) |
|
out = x * out.unsqueeze(2) |
|
|
|
return out |
|
|
|
|
|
""" SE-Res2Block of the ECAPA-TDNN architecture. |
|
""" |
|
|
|
|
|
class SE_Res2Block(nn.Module): |
|
|
|
def __init__(self, channels, kernel_size, stride, padding, dilation, scale): |
|
super().__init__() |
|
self.se_res2block = nn.Sequential( |
|
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), |
|
Res2Conv1dReluBn( |
|
channels, kernel_size, stride, padding, dilation, scale=scale |
|
), |
|
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), |
|
SE_Connect(channels), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.se_res2block(x) |
|
|
|
|
|
class ECAPA_TDNN(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
channels=512, |
|
feat_dim=80, |
|
embed_dim=192, |
|
pooling_func="ASTP", |
|
global_context_att=False, |
|
emb_bn=False, |
|
): |
|
super().__init__() |
|
|
|
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2) |
|
self.layer2 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8 |
|
) |
|
self.layer3 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8 |
|
) |
|
self.layer4 = SE_Res2Block( |
|
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8 |
|
) |
|
|
|
cat_channels = channels * 3 |
|
out_channels = 512 * 3 |
|
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1) |
|
self.pool = getattr(pooling_layers, pooling_func)( |
|
in_dim=out_channels, global_context_att=global_context_att |
|
) |
|
self.pool_out_dim = self.pool.get_out_dim() |
|
self.bn = nn.BatchNorm1d(self.pool_out_dim) |
|
self.linear = nn.Linear(self.pool_out_dim, embed_dim) |
|
self.emb_bn = emb_bn |
|
if emb_bn: |
|
self.bn2 = nn.BatchNorm1d(embed_dim) |
|
else: |
|
self.bn2 = nn.Identity() |
|
|
|
def forward(self, x, return_latent=False): |
|
x = x.permute(0, 2, 1) |
|
|
|
out1 = self.layer1(x) |
|
out2 = self.layer2(out1) |
|
out3 = self.layer3(out2) |
|
out4 = self.layer4(out3) |
|
|
|
out = torch.cat([out2, out3, out4], dim=1) |
|
latent = F.relu(self.conv(out)) |
|
out = self.bn(self.pool(latent)) |
|
out = self.linear(out) |
|
if self.emb_bn: |
|
out = self.bn2(out) |
|
|
|
if return_latent: |
|
return out, latent |
|
return out |
|
|
|
|
|
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=1024, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=1024, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
global_context_att=True, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=512, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): |
|
return ECAPA_TDNN( |
|
channels=512, |
|
feat_dim=feat_dim, |
|
embed_dim=embed_dim, |
|
pooling_func=pooling_func, |
|
global_context_att=True, |
|
emb_bn=emb_bn, |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
x = torch.zeros(1, 200, 100) |
|
model = ECAPA_TDNN_GLOB_c512(feat_dim=100, embed_dim=256, pooling_func="ASTP") |
|
model.eval() |
|
out, latent = model(x, True) |
|
print(out.shape) |
|
print(latent.shape) |
|
|
|
num_params = sum(param.numel() for param in model.parameters()) |
|
print("{} M".format(num_params / 1e6)) |
|
|
|
|
|
|
|
|
|
|
|
|