Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,20 +10,18 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
| 10 |
|
| 11 |
class AnimeGANv3:
|
| 12 |
def __init__(self):
|
| 13 |
-
# Ensure directories exist
|
| 14 |
os.makedirs('output', exist_ok=True)
|
| 15 |
os.makedirs('frames', exist_ok=True)
|
|
|
|
| 16 |
|
| 17 |
def process_frame(self, frame, style_code, det_face):
|
| 18 |
-
"""Process a single frame with AnimeGANv3."""
|
| 19 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 20 |
output = AnimeGANv3_src.Convert(frame_rgb, style_code, det_face)
|
| 21 |
-
return output[:, :, ::-1]
|
| 22 |
|
| 23 |
def inference(self, video_path, style, if_face=None):
|
| 24 |
logging.info(f"Starting inference: video={video_path}, style={style}, face_detection={if_face}")
|
| 25 |
try:
|
| 26 |
-
# Map style names to codes
|
| 27 |
style_codes = {
|
| 28 |
"AnimeGANv3_Arcane": "A",
|
| 29 |
"AnimeGANv3_Trump v1.0": "T",
|
|
@@ -37,40 +35,49 @@ class AnimeGANv3:
|
|
| 37 |
style_code = style_codes.get(style, "U")
|
| 38 |
det_face = if_face == "Yes"
|
| 39 |
|
| 40 |
-
# Open
|
| 41 |
cap = cv2.VideoCapture(video_path)
|
| 42 |
if not cap.isOpened():
|
| 43 |
raise Exception("Could not open video file")
|
| 44 |
|
| 45 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 46 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 47 |
-
frames = []
|
| 48 |
-
|
| 49 |
-
while cap.isOpened():
|
| 50 |
-
ret, frame = cap.read()
|
| 51 |
-
if not ret:
|
| 52 |
-
break
|
| 53 |
-
frames.append(frame)
|
| 54 |
-
|
| 55 |
-
cap.release()
|
| 56 |
logging.info(f"Extracted {frame_count} frames at {fps} FPS to process")
|
| 57 |
|
| 58 |
-
# Process
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
if
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
|
| 75 |
logging.info(f"Video created: {save_path}")
|
| 76 |
return save_path
|
|
@@ -78,10 +85,10 @@ class AnimeGANv3:
|
|
| 78 |
logging.error(f"Error: {str(error)}")
|
| 79 |
return None
|
| 80 |
|
| 81 |
-
# Create an instance
|
| 82 |
anime_gan = AnimeGANv3()
|
| 83 |
|
| 84 |
-
#
|
| 85 |
title = "AnimeGANv3: Video to Anime Converter"
|
| 86 |
description = r"""Upload a video to convert it into anime style using AnimeGANv3.<br>
|
| 87 |
Select a style and choose whether to optimize for faces.<br>
|
|
@@ -112,5 +119,4 @@ iface = gr.Interface(
|
|
| 112 |
allow_flagging="never"
|
| 113 |
)
|
| 114 |
|
| 115 |
-
# Launch the interface
|
| 116 |
iface.launch()
|
|
|
|
| 10 |
|
| 11 |
class AnimeGANv3:
|
| 12 |
def __init__(self):
|
|
|
|
| 13 |
os.makedirs('output', exist_ok=True)
|
| 14 |
os.makedirs('frames', exist_ok=True)
|
| 15 |
+
logging.info(f"Available ONNX Runtime providers: {ort.get_available_providers()}")
|
| 16 |
|
| 17 |
def process_frame(self, frame, style_code, det_face):
|
|
|
|
| 18 |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 19 |
output = AnimeGANv3_src.Convert(frame_rgb, style_code, det_face)
|
| 20 |
+
return output[:, :, ::-1]
|
| 21 |
|
| 22 |
def inference(self, video_path, style, if_face=None):
|
| 23 |
logging.info(f"Starting inference: video={video_path}, style={style}, face_detection={if_face}")
|
| 24 |
try:
|
|
|
|
| 25 |
style_codes = {
|
| 26 |
"AnimeGANv3_Arcane": "A",
|
| 27 |
"AnimeGANv3_Trump v1.0": "T",
|
|
|
|
| 35 |
style_code = style_codes.get(style, "U")
|
| 36 |
det_face = if_face == "Yes"
|
| 37 |
|
| 38 |
+
# Open video
|
| 39 |
cap = cv2.VideoCapture(video_path)
|
| 40 |
if not cap.isOpened():
|
| 41 |
raise Exception("Could not open video file")
|
| 42 |
|
| 43 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 44 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
logging.info(f"Extracted {frame_count} frames at {fps} FPS to process")
|
| 46 |
|
| 47 |
+
# Process in batches
|
| 48 |
+
batch_size = 50 # Adjust based on testing (e.g., 50 frames per batch)
|
| 49 |
+
save_path = "output/out.mp4"
|
| 50 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 51 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 52 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 53 |
+
out = None # Video writer initialized later
|
| 54 |
|
| 55 |
+
frame_idx = 0
|
| 56 |
+
while cap.isOpened():
|
| 57 |
+
batch_frames = []
|
| 58 |
+
for _ in range(batch_size):
|
| 59 |
+
ret, frame = cap.read()
|
| 60 |
+
if not ret:
|
| 61 |
+
break
|
| 62 |
+
batch_frames.append(frame)
|
| 63 |
+
frame_idx += 1
|
| 64 |
+
|
| 65 |
+
if not batch_frames:
|
| 66 |
+
break
|
| 67 |
|
| 68 |
+
# Process batch
|
| 69 |
+
for idx, frame in enumerate(batch_frames):
|
| 70 |
+
stylized_frame = self.process_frame(frame, style_code, det_face)
|
| 71 |
+
if out is None: # Initialize writer on first frame
|
| 72 |
+
out = cv2.VideoWriter(save_path, fourcc, fps, (width, height))
|
| 73 |
+
out.write(stylized_frame)
|
| 74 |
+
logging.info(f"Processed frame {frame_idx - len(batch_frames) + idx + 1}/{frame_count}")
|
| 75 |
|
| 76 |
+
cap.release()
|
| 77 |
+
if out:
|
| 78 |
+
out.release()
|
| 79 |
+
else:
|
| 80 |
+
raise Exception("No frames processed")
|
| 81 |
|
| 82 |
logging.info(f"Video created: {save_path}")
|
| 83 |
return save_path
|
|
|
|
| 85 |
logging.error(f"Error: {str(error)}")
|
| 86 |
return None
|
| 87 |
|
| 88 |
+
# Create an instance
|
| 89 |
anime_gan = AnimeGANv3()
|
| 90 |
|
| 91 |
+
# Gradio interface
|
| 92 |
title = "AnimeGANv3: Video to Anime Converter"
|
| 93 |
description = r"""Upload a video to convert it into anime style using AnimeGANv3.<br>
|
| 94 |
Select a style and choose whether to optimize for faces.<br>
|
|
|
|
| 119 |
allow_flagging="never"
|
| 120 |
)
|
| 121 |
|
|
|
|
| 122 |
iface.launch()
|