Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import time | |
import spaces | |
# Model configurations | |
MODELS = { | |
"Athena-R3X 8B": "Spestly/Athena-R3X-8B", | |
"Athena-R3X 4B": "Spestly/Athena-R3X-4B", | |
"Athena-R3 7B": "Spestly/Athena-R3-7B", | |
"Athena-3 3B": "Spestly/Athena-3-3B", | |
"Athena-3 7B": "Spestly/Athena-3-7B", | |
"Athena-3 14B": "Spestly/Athena-3-14B", | |
"Athena-2 1.5B": "Spestly/Athena-2-1.5B", | |
"Athena-1 3B": "Spestly/Athena-1-3B", | |
"Athena-1 7B": "Spestly/Athena-1-7B" | |
} | |
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7): | |
"""Generate response using ZeroGPU - all CUDA operations happen here""" | |
print(f"π Loading {model_id}...") | |
start_time = time.time() | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
load_time = time.time() - start_time | |
print(f"β Model loaded in {load_time:.2f}s") | |
# Build messages in proper chat format (OpenAI-style messages) | |
messages = [] | |
system_prompt = ( | |
"You are Athena, a helpful, harmless, and honest AI assistant. " | |
"You provide clear, accurate, and concise responses to user questions. " | |
"You are knowledgeable across many domains and always aim to be respectful and helpful. " | |
"You are finetuned by Aayan Mishra" | |
) | |
messages.append({"role": "system", "content": system_prompt}) | |
# Add conversation history (OpenAI-style) | |
for msg in conversation: | |
if msg["role"] in ("user", "assistant"): | |
messages.append({"role": msg["role"], "content": msg["content"]}) | |
# Add current user message | |
messages.append({"role": "user", "content": user_message}) | |
prompt = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
inputs = tokenizer(prompt, return_tensors="pt") | |
device = next(model.parameters()).device | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
generation_start = time.time() | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_length, | |
temperature=temperature, | |
do_sample=True, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
generation_time = time.time() - generation_start | |
response = tokenizer.decode( | |
outputs[0][inputs['input_ids'].shape[-1]:], | |
skip_special_tokens=True | |
).strip() | |
return response, load_time, generation_time | |
def respond(history, message, model_name, max_length, temperature): | |
"""Main function for custom Chatbot interface""" | |
if not message.strip(): | |
history = history + [["user", message], ["assistant", "Please enter a message"]] | |
return history, "" | |
model_id = MODELS.get(model_name, MODELS["Athena-R3X 8B"]) | |
try: | |
# Format history for Athena | |
formatted_history = [] | |
for i in range(0, len(history), 2): | |
if i < len(history): | |
user_msg = history[i][1] if history[i][0] == "user" else "" | |
assistant_msg = history[i+1][1] if i+1 < len(history) and history[i+1][0] == "assistant" else "" | |
if user_msg: | |
formatted_history.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
formatted_history.append({"role": "assistant", "content": assistant_msg}) | |
response, load_time, generation_time = generate_response( | |
model_id, formatted_history, message, max_length, temperature | |
) | |
history = history + [["user", message], ["assistant", response]] | |
return history, "" | |
except Exception as e: | |
history = history + [["user", message], ["assistant", f"Error: {str(e)}"]] | |
return history, "" | |
css = """ | |
.message { | |
padding: 10px; | |
margin: 5px; | |
border-radius: 10px; | |
} | |
""" | |
theme = gr.themes.Monochrome() | |
with gr.Blocks(title="Athena Playground Chat", css=css, theme=theme) as demo: | |
gr.Markdown("# π Athena Playground Chat") | |
gr.Markdown("*Powered by HuggingFace ZeroGPU*") | |
chatbot = gr.Chatbot(height=500, label="Athena", avatar="π€") | |
state = gr.State([]) # chat history | |
with gr.Row(): | |
user_input = gr.Textbox(label="Your message", scale=8, autofocus=True) | |
send_btn = gr.Button(value="Send", scale=1) | |
# --- Configuration controls at the bottom --- | |
gr.Markdown("### βοΈ Model & Generation Settings") | |
with gr.Row(): | |
model_choice = gr.Dropdown( | |
label="π± Model", | |
choices=list(MODELS.keys()), | |
value="Athena-R3X 4B", | |
info="Select which Athena model to use" | |
) | |
max_length = gr.Slider( | |
32, 2048, value=512, | |
label="π Max Tokens", | |
info="Maximum number of tokens to generate" | |
) | |
temperature = gr.Slider( | |
0.1, 2.0, value=0.7, | |
label="π¨ Creativity", | |
info="Higher values = more creative responses" | |
) | |
def chat_submit(history, message, model_name, max_length, temperature): | |
return respond(history, message, model_name, max_length, temperature) | |
send_btn.click( | |
chat_submit, | |
inputs=[state, user_input, model_choice, max_length, temperature], | |
outputs=[chatbot, user_input] | |
) | |
if __name__ == "__main__": | |
demo.launch() |