File size: 5,986 Bytes
82452fa
 
 
 
3a04e30
82452fa
3a04e30
 
 
 
 
82452fa
3a04e30
82452fa
 
 
3a04e30
 
 
82452fa
3a04e30
82452fa
3a04e30
 
82452fa
 
3a04e30
 
 
 
77246c4
3a04e30
77246c4
 
 
 
 
 
 
 
3a04e30
 
77246c4
3a04e30
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77246c4
3a04e30
 
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
 
77246c4
3a04e30
 
77246c4
3a04e30
 
82452fa
 
 
3a04e30
82452fa
3a04e30
 
82452fa
3a04e30
 
 
 
 
 
 
 
 
 
 
 
82452fa
3a04e30
 
 
 
 
77246c4
 
 
3a04e30
 
77246c4
3a04e30
 
 
 
 
 
 
 
 
 
82452fa
77246c4
 
3a04e30
82452fa
3a04e30
 
 
 
 
 
 
77246c4
 
 
3a04e30
82452fa
 
e6695b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces

# ZeroGPU decorator for GPU-intensive functions
@spaces.GPU
def load_model_gpu(model_id):
    """Load model on ZeroGPU"""
    print(f"πŸš€ Loading {model_id} on ZeroGPU...")
    start_time = time.time()
    
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16,  # Use float16 for better memory efficiency
        device_map="auto",
        trust_remote_code=True
    )
    
    load_time = time.time() - start_time
    print(f"βœ… Model loaded in {load_time:.2f}s")
    
    return model, tokenizer

@spaces.GPU
def generate_response(model, tokenizer, prompt, max_length=512, temperature=0.7):
    """Generate response using ZeroGPU"""
    device = next(model.parameters()).device
    inputs = tokenizer(prompt, return_tensors="pt").to(device)
    
    start_time = time.time()
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_length,
            temperature=temperature,
            do_sample=True,
            top_p=0.9,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    
    generation_time = time.time() - start_time
    output_text = tokenizer.decode(
        outputs[0][inputs['input_ids'].shape[-1]:], 
        skip_special_tokens=True
    ).strip()
    
    return output_text, generation_time

# Model configurations
MODELS = {
    "Athena-R3X 8B": "Spestly/Athena-R3X-8B",
    "Athena-R3X 4B": "Spestly/Athena-R3X-4B",
    "Athena-R3 7B": "Spestly/Athena-R3-7B",
    "Athena-3 3B": "Spestly/Athena-3-3B",
    "Athena-3 7B": "Spestly/Athena-3-7B",
    "Athena-3 14B": "Spestly/Athena-3-14B",
    "Athena-2 1.5B": "Spestly/Athena-2-1.5B",
    "Athena-1 3B": "Spestly/Athena-1-3B",
    "Athena-1 7B": "Spestly/Athena-1-7B"
}

def chatbot(conversation, user_message, model_name, max_length=512, temperature=0.7):
    if not user_message.strip():
        return conversation, "", "Please enter a message"
    
    if conversation is None:
        conversation = []
    
    # Get model ID
    model_id = MODELS.get(model_name, MODELS["Athena-R3X 8B"])
    
    try:
        # Load model and tokenizer using ZeroGPU
        model, tokenizer = load_model_gpu(model_id)
        
        # Append user message to conversation
        conversation.append([user_message, ""])
        
        # Build prompt from conversation history
        prompt = ""
        for user_msg, assistant_msg in conversation[:-1]:  # Exclude the current message
            prompt += f"User: {user_msg}\nAthena: {assistant_msg}\n"
        prompt += f"User: {user_message}\nAthena:"
        
        # Generate response using ZeroGPU
        output_text, generation_time = generate_response(
            model, tokenizer, prompt, max_length, temperature
        )
        
        # Update the last conversation entry with the response
        conversation[-1][1] = output_text
        
        stats = f"⚑ Generated in {generation_time:.2f}s | Model: {model_name} | Temp: {temperature}"
        
        return conversation, "", stats
        
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        if conversation:
            conversation[-1][1] = error_msg
        else:
            conversation = [[user_message, error_msg]]
        return conversation, "", f"❌ Error occurred: {str(e)}"

def clear_chat():
    return [], "", ""

# CSS for better styling
css = """
#chatbot {
    height: 600px;
}
.message {
    padding: 10px;
    margin: 5px;
    border-radius: 10px;
}
"""

# Create Gradio interface
with gr.Blocks(title="Athena Playground Chat", css=css) as demo:
    gr.Markdown("# πŸš€ Athena Playground Chat")
    gr.Markdown("*Powered by HuggingFace ZeroGPU*")
    
    with gr.Row():
        with gr.Column(scale=1):
            model_choice = gr.Dropdown(
                label="πŸ“± Model",
                choices=list(MODELS.keys()),
                value="Athena-R3X 8B",
                info="Select which Athena model to use"
            )
            max_length = gr.Slider(
                32, 2048, value=512, 
                label="πŸ“ Max Tokens",
                info="Maximum number of tokens to generate"
            )
            temperature = gr.Slider(
                0.1, 2.0, value=0.7, 
                label="🎨 Creativity",
                info="Higher values = more creative responses"
            )
            clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
        
        with gr.Column(scale=3):
            chat_history = gr.Chatbot(
                elem_id="chatbot",
                show_label=False,
                avatar_images=["πŸ‘€", "πŸ€–"]
            )
            user_input = gr.Textbox(
                placeholder="Ask Athena anything...",
                label="Your message",
                lines=2,
                max_lines=10
            )
            with gr.Row():
                submit_btn = gr.Button("πŸ“€ Send", variant="primary")
                stats_output = gr.Textbox(
                    label="Stats", 
                    interactive=False,
                    show_label=False,
                    placeholder="Stats will appear here..."
                )
    
    # Event handlers
    submit_btn.click(
        chatbot,
        inputs=[chat_history, user_input, model_choice, max_length, temperature],
        outputs=[chat_history, user_input, stats_output]
    )
    
    user_input.submit(
        chatbot,
        inputs=[chat_history, user_input, model_choice, max_length, temperature],
        outputs=[chat_history, user_input, stats_output]
    )
    
    clear_btn.click(
        clear_chat,
        inputs=[],
        outputs=[chat_history, user_input, stats_output]
    )

if __name__ == "__main__":
    demo.launch()