File size: 5,276 Bytes
82452fa
 
 
 
3a04e30
82452fa
eeda09f
 
 
 
 
 
 
 
 
 
 
 
 
3a04e30
eeda09f
 
 
82452fa
 
eeda09f
 
82452fa
 
eeda09f
3a04e30
 
82452fa
 
3a04e30
5bfa0a1
 
db56ca9
 
eeda09f
 
5bfa0a1
eeda09f
5bfa0a1
 
 
 
 
 
 
eeda09f
018f2bb
 
eeda09f
77246c4
 
 
 
 
 
 
3a04e30
 
77246c4
eeda09f
 
3a04e30
 
 
eeda09f
77246c4
d4a0dae
 
 
 
3a04e30
 
eeda09f
d4a0dae
3a04e30
d4a0dae
3a04e30
d4a0dae
77246c4
3a04e30
663284d
 
 
 
3a04e30
 
77246c4
b0a11da
 
 
77246c4
3a04e30
1c4e5c1
66e319b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4e5c1
66e319b
d4a0dae
 
 
 
 
 
 
9c405c2
 
 
 
d4a0dae
 
 
 
 
9c405c2
 
 
 
82452fa
 
66e319b
1c4e5c1
66e319b
 
1c4e5c1
e6695b6
9c405c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import time
import spaces

# Model configurations
MODELS = {
    "Athena-R3X 8B": "Spestly/Athena-R3X-8B",
    "Athena-R3X 4B": "Spestly/Athena-R3X-4B",
    "Athena-R3 7B": "Spestly/Athena-R3-7B",
    "Athena-3 3B": "Spestly/Athena-3-3B",
    "Athena-3 7B": "Spestly/Athena-3-7B",
    "Athena-3 14B": "Spestly/Athena-3-14B",
    "Athena-2 1.5B": "Spestly/Athena-2-1.5B",
    "Athena-1 3B": "Spestly/Athena-1-3B",
    "Athena-1 7B": "Spestly/Athena-1-7B"
}

@spaces.GPU
def generate_response(model_id, conversation, user_message, max_length=512, temperature=0.7):
    """Generate response using ZeroGPU - all CUDA operations happen here"""
    print(f"πŸš€ Loading {model_id}...")
    start_time = time.time()
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.float16,
        device_map="auto",
        trust_remote_code=True
    )
    load_time = time.time() - start_time
    print(f"βœ… Model loaded in {load_time:.2f}s")
    # Build messages in proper chat format
    messages = []
    system_prompt = "You are Athena, a helpful, harmless, and honest AI assistant. You provide clear, accurate, and concise responses to user questions. You are knowledgeable across many domains and always aim to be respectful and helpful. You are finetuned by Aayan Mishra"
    messages.append({"role": "system", "content": system_prompt})
    for user_msg, assistant_msg in conversation:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": user_message})
    prompt = tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
    )
    inputs = tokenizer(prompt, return_tensors="pt")
    device = next(model.parameters()).device
    inputs = {k: v.to(device) for k, v in inputs.items()}
    generation_start = time.time()
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_length,
            temperature=temperature,
            do_sample=True,
            top_p=0.9,
            pad_token_id=tokenizer.eos_token_id,
            eos_token_id=tokenizer.eos_token_id
        )
    generation_time = time.time() - generation_start
    response = tokenizer.decode(
        outputs[0][inputs['input_ids'].shape[-1]:], 
        skip_special_tokens=True
    ).strip()
    return response, load_time, generation_time

def respond(message, history, model_name, max_length, temperature):
    """Main function for ChatInterface - simplified signature"""
    if not message.strip():
        return "Please enter a message"
    model_id = MODELS.get(model_name, MODELS["Athena-R3X 8B"])
    try:
        response, load_time, generation_time = generate_response(
            model_id, history, message, max_length, temperature
        )
        return response
    except Exception as e:
        return f"Error: {str(e)}"

css = """
.message {
    padding: 10px;
    margin: 5px;
    border-radius: 10px;
}
"""

theme = gr.themes.Monochrome()

with gr.Blocks(title="Athena Playground Chat", css=css, theme=theme) as demo:
    gr.Markdown("# πŸš€ Athena Playground Chat")
    gr.Markdown("*Powered by HuggingFace ZeroGPU*")

    # 1. Declare config components FIRST
    model_choice = gr.Dropdown(
        label="πŸ“± Model",
        choices=list(MODELS.keys()),
        value="Athena-R3X 8B",
        info="Select which Athena model to use"
    )
    max_length = gr.Slider(
        32, 2048, value=512, 
        label="πŸ“ Max Tokens",
        info="Maximum number of tokens to generate"
    )
    temperature = gr.Slider(
        0.1, 2.0, value=0.7, 
        label="🎨 Creativity",
        info="Higher values = more creative responses"
    )

    # 2. Create the chat interface, passing the controls as additional_inputs
    chat_interface = gr.ChatInterface(
        fn=respond,
        additional_inputs=[model_choice, max_length, temperature],
        title="Chat with Athena",
        description="Ask Athena anything!",
        theme="soft",
        examples=[
            ["Hello! How are you?", "Athena-R3X 8B", 512, 0.7],
            ["What can you help me with?", "Athena-R3X 8B", 512, 0.7],
            ["Tell me about artificial intelligence", "Athena-R3X 8B", 512, 0.7],
            ["Write a short poem about space", "Athena-R3X 8B", 512, 0.7]
        ],
        cache_examples=False,
        chatbot=gr.Chatbot(
            height=500,
            placeholder="Start chatting with Athena...",
            show_share_button=False,
            type="messages"
        ),
        type="messages"
    )

    # 3. Place the controls in an Accordion for display (they are still linked!)
    with gr.Accordion("Configurations", open=False):
        gr.Markdown("### Change Model and Generation Settings")
        gr.Row([model_choice, max_length, temperature])

if __name__ == "__main__":
    demo.launch()