Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	
		Shunfeng Zheng
		
	commited on
		
		
					Upload 1_SpatialParse.py
Browse files- 1_SpatialParse.py +404 -0
    	
        1_SpatialParse.py
    ADDED
    
    | @@ -0,0 +1,404 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import streamlit as st
         | 
| 2 | 
            +
            from spacy import displacy
         | 
| 3 | 
            +
            import spacy
         | 
| 4 | 
            +
            import geospacy
         | 
| 5 | 
            +
            from PIL import Image
         | 
| 6 | 
            +
            import base64
         | 
| 7 | 
            +
            import sys
         | 
| 8 | 
            +
            import pandas as pd
         | 
| 9 | 
            +
            # import en_core_web_md
         | 
| 10 | 
            +
            from spacy.tokens import Span, Doc, Token
         | 
| 11 | 
            +
            from utils import geoutil
         | 
| 12 | 
            +
            import llm_coding
         | 
| 13 | 
            +
            import urllib.parse
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"}
         | 
| 17 | 
            +
            options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors}
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            HTML_WRAPPER = """<div style="overflow-x: auto; border: none solid #a6e22d; border-radius: 0.25rem; padding: 1rem">{}</div>"""
         | 
| 20 | 
            +
            model = ""
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            gpe_selected = "GPE"
         | 
| 23 | 
            +
            loc_selected = "LOC"
         | 
| 24 | 
            +
            rse_selected = "RSE"
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            types = ""
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            #BASE_URL = "http://localhost:8080/"
         | 
| 29 | 
            +
            BASE_URL = ""
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
             | 
| 33 | 
            +
            def set_header():
         | 
| 34 | 
            +
                LOGO_IMAGE = "tetis-1.png"
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                st.markdown(
         | 
| 37 | 
            +
                    """
         | 
| 38 | 
            +
                    <style>
         | 
| 39 | 
            +
                    .container {
         | 
| 40 | 
            +
                        display: flex;
         | 
| 41 | 
            +
                    }
         | 
| 42 | 
            +
                    .logo-text {
         | 
| 43 | 
            +
                        font-weight:700 !important;
         | 
| 44 | 
            +
                        font-size:50px !important;
         | 
| 45 | 
            +
                        color: #f9a01b !important;
         | 
| 46 | 
            +
                        padding-left: 10px !important;
         | 
| 47 | 
            +
                    }
         | 
| 48 | 
            +
                    .logo-img {
         | 
| 49 | 
            +
                        float:right;
         | 
| 50 | 
            +
                        width: 28%;
         | 
| 51 | 
            +
                        height: 28%;
         | 
| 52 | 
            +
                    }
         | 
| 53 | 
            +
                    </style>
         | 
| 54 | 
            +
                    """,
         | 
| 55 | 
            +
                    unsafe_allow_html=True
         | 
| 56 | 
            +
                )
         | 
| 57 | 
            +
                st.markdown(
         | 
| 58 | 
            +
                    f"""
         | 
| 59 | 
            +
                    <div class="container">
         | 
| 60 | 
            +
                        <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
         | 
| 61 | 
            +
                        <p class="logo-text">GeOspaCy</p>
         | 
| 62 | 
            +
                    </div>
         | 
| 63 | 
            +
                    """,
         | 
| 64 | 
            +
                    unsafe_allow_html=True
         | 
| 65 | 
            +
                )
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            def set_side_menu():
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                global gpe_selected, loc_selected, rse_selected, model, types
         | 
| 72 | 
            +
                types =""
         | 
| 73 | 
            +
                params = st.experimental_get_query_params()
         | 
| 74 | 
            +
                # params = st.query_params
         | 
| 75 | 
            +
                # print(params, 777)
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                st.sidebar.markdown("## Spacy Model")
         | 
| 78 | 
            +
                st.sidebar.markdown("You can **select** the values of the *spacy model* from Dropdown.")
         | 
| 79 | 
            +
                models = ['en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
         | 
| 80 | 
            +
                if "model" in params:
         | 
| 81 | 
            +
                    default_ix = models.index(params["model"][0])
         | 
| 82 | 
            +
                else:
         | 
| 83 | 
            +
                    default_ix = models.index('en_core_web_sm')
         | 
| 84 | 
            +
                model = st.sidebar.selectbox('Spacy Model',models, index=default_ix)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                st.sidebar.markdown("## Spatial Entity Labels")
         | 
| 87 | 
            +
                st.sidebar.markdown("**Mark** the Spatial Entities you want to extract?")
         | 
| 88 | 
            +
                tpes = ""
         | 
| 89 | 
            +
                if "type" in params:
         | 
| 90 | 
            +
                    tpes = params['type'][0]
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                if "g" in tpes:
         | 
| 93 | 
            +
                    gpe = st.sidebar.checkbox('GPE', value = True)
         | 
| 94 | 
            +
                else:
         | 
| 95 | 
            +
                    gpe = st.sidebar.checkbox('GPE')
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                if "l" in tpes:
         | 
| 98 | 
            +
                    loc = st.sidebar.checkbox('LOC', value = True)
         | 
| 99 | 
            +
                else:
         | 
| 100 | 
            +
                    loc = st.sidebar.checkbox('LOC')
         | 
| 101 | 
            +
                if "r" in tpes:
         | 
| 102 | 
            +
                    rse = st.sidebar.checkbox('RSE', value = True)
         | 
| 103 | 
            +
                else:
         | 
| 104 | 
            +
                    rse = st.sidebar.checkbox('RSE')
         | 
| 105 | 
            +
                if(gpe):
         | 
| 106 | 
            +
                    gpe_selected ="GPE"
         | 
| 107 | 
            +
                    types+="g"
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                if(loc):
         | 
| 110 | 
            +
                    loc_selected ="LOC"
         | 
| 111 | 
            +
                    types+="l"
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                if(rse):
         | 
| 114 | 
            +
                    rse_selected ="RSE"
         | 
| 115 | 
            +
                    types+="r"
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def set_input():
         | 
| 120 | 
            +
                params = st.experimental_get_query_params()
         | 
| 121 | 
            +
                # params = st.query_params
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                if "text" not in params:
         | 
| 124 | 
            +
                    text = st.text_area("Input unstructured text:", "")
         | 
| 125 | 
            +
                else:
         | 
| 126 | 
            +
                    text = st.text_area("Enter the text to extract {Spatial Entities}", params["text"][0])
         | 
| 127 | 
            +
                if(st.button("Extract")):
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    # return 'France has detected a highly pathogenic strain of bird flu in a pet shop near Paris, days after an identical outbreak in one of Corsica’s main cities.'
         | 
| 130 | 
            +
             | 
| 131 | 
            +
             | 
| 132 | 
            +
                    return 'I would like to know where is the area between Burwood and Glebe. Pyrmont.'
         | 
| 133 | 
            +
                    return '5 km east of Burwood. 3 km south of Glebe. Between Pyrmont and Glebe.'
         | 
| 134 | 
            +
                    # return 'Between Burwood and Pyrmont.'
         | 
| 135 | 
            +
                    # return 'Between Burwood and Glebe.'
         | 
| 136 | 
            +
                    # return 'Between Burwood and Darling Harbour.'
         | 
| 137 | 
            +
                    # return 'Between China and USA.'
         | 
| 138 | 
            +
                    # return 'The Burwood city.'
         | 
| 139 | 
            +
                    # text = "New York is north of Washington. Between Burwood and Pyrmont city."
         | 
| 140 | 
            +
                    return text
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            def set_selected_entities(doc):
         | 
| 143 | 
            +
                global gpe_selected, loc_selected, rse_selected, model
         | 
| 144 | 
            +
                ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                doc.ents = ents
         | 
| 147 | 
            +
                return doc
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            def extract_spatial_entities(text):
         | 
| 150 | 
            +
                # nlp = en_core_web_md.load()
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                # nlp = spacy.load("en_core_web_md")
         | 
| 153 | 
            +
                # nlp.add_pipe("spatial_pipeline", after="ner")
         | 
| 154 | 
            +
                # doc = nlp(text)
         | 
| 155 | 
            +
                # doc = set_selected_entities(doc)
         | 
| 156 | 
            +
                # html = displacy.render(doc, style="ent", options=options)
         | 
| 157 | 
            +
                # html = html.replace("\n", "")
         | 
| 158 | 
            +
                # st.write(HTML_WRAPPER.format(html), unsafe_allow_html=True)
         | 
| 159 | 
            +
                # show_spatial_ent_table(doc, text)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                nlp = spacy.load("en_core_web_md")                                  #####
         | 
| 162 | 
            +
                nlp.add_pipe("spatial_pipeline", after="ner")
         | 
| 163 | 
            +
                doc = nlp(text)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                # 分句处理
         | 
| 166 | 
            +
                sent_ents = []
         | 
| 167 | 
            +
                sent_texts = []
         | 
| 168 | 
            +
                sent_rse_id = []
         | 
| 169 | 
            +
                offset = 0                              # 记录当前 token 偏移量
         | 
| 170 | 
            +
                sent_start_positions = [0]              # 记录句子信息
         | 
| 171 | 
            +
                doc_copy = doc.copy()                   # 用于展示方程组合
         | 
| 172 | 
            +
                for sent in doc.sents:
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    sent_doc = nlp(sent.text)  # 逐句处理
         | 
| 175 | 
            +
                    sent_doc = set_selected_entities(sent_doc)  # 这里处理实体
         | 
| 176 | 
            +
                    sent_texts.append(sent_doc.text)
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    for ent in sent_doc.ents:
         | 
| 179 | 
            +
                        sent_rse_id.append(ent._.rse_id)
         | 
| 180 | 
            +
                    # **调整每个实体的索引,使其匹配完整文本**
         | 
| 181 | 
            +
                    for ent in sent_doc.ents:
         | 
| 182 | 
            +
                        new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
         | 
| 183 | 
            +
                        sent_ents.append(new_ent)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    offset += len(sent)  # 更新偏移量
         | 
| 186 | 
            +
                    sent_start_positions.append(sent_start_positions[-1] + len(sent))           # 记录句子起点
         | 
| 187 | 
            +
                # **创建新 Doc**
         | 
| 188 | 
            +
                final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
         | 
| 189 | 
            +
                for i in sent_start_positions:                      # 手动标记句子起始点
         | 
| 190 | 
            +
                    if i < len(final_doc):
         | 
| 191 | 
            +
                        final_doc[i].is_sent_start = True
         | 
| 192 | 
            +
                # **设置实体**
         | 
| 193 | 
            +
                final_doc.set_ents(sent_ents)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                for i in range(len(sent_rse_id)):
         | 
| 196 | 
            +
                    final_doc.ents[i]._.rse_id = sent_rse_id[i]
         | 
| 197 | 
            +
                print(doc.ents[0].sent, '原始')
         | 
| 198 | 
            +
                doc = final_doc
         | 
| 199 | 
            +
                print(doc.ents[0].sent, '新')
         | 
| 200 | 
            +
                # 分句处理完毕
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                # doc = set_selected_entities(doc)
         | 
| 203 | 
            +
                doc.to_disk("saved_doc.spacy")
         | 
| 204 | 
            +
             | 
| 205 | 
            +
             | 
| 206 | 
            +
             | 
| 207 | 
            +
             | 
| 208 | 
            +
                html = displacy.render(doc,style="ent", options = options)
         | 
| 209 | 
            +
                html = html.replace("\n","")
         | 
| 210 | 
            +
                st.write(HTML_WRAPPER.format(html),unsafe_allow_html=True)
         | 
| 211 | 
            +
                show_spatial_ent_table(doc, text)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                st.markdown("123123")
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                show_sentence_selector_table(doc_copy)
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            def show_sentence_selector_table(doc_copy):
         | 
| 218 | 
            +
                st.markdown("**______________________________________________________________________________________**")
         | 
| 219 | 
            +
                st.markdown("**Sentence Selector for Geographic Composition**")
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                # 提取句子
         | 
| 222 | 
            +
                sentences = list(doc_copy.sents)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                # 构建表格数据
         | 
| 225 | 
            +
                rows = []
         | 
| 226 | 
            +
                for idx, sent in enumerate(sentences):
         | 
| 227 | 
            +
                    sentence_text = sent.text.strip()
         | 
| 228 | 
            +
                    # 生成跳转链接(定位到Tagger)
         | 
| 229 | 
            +
                    url = BASE_URL + "Tagger?mode=geocombo&text=" + urllib.parse.quote(sentence_text)
         | 
| 230 | 
            +
                    new_row = {
         | 
| 231 | 
            +
                        'Sr.': idx + 1,
         | 
| 232 | 
            +
                        'sentence': sentence_text,
         | 
| 233 | 
            +
                        'Select': f'<a target="_self" href="{url}">Select this sentence</a>'
         | 
| 234 | 
            +
                    }
         | 
| 235 | 
            +
                    rows.append(new_row)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                # 转为 DataFrame 并渲染为 HTML
         | 
| 238 | 
            +
                df = pd.DataFrame(rows)
         | 
| 239 | 
            +
                st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
             | 
| 242 | 
            +
             | 
| 243 | 
            +
            def show_spatial_ent_table(doc, text):
         | 
| 244 | 
            +
                global types
         | 
| 245 | 
            +
                if len(doc.ents) > 0:
         | 
| 246 | 
            +
                    st.markdown("**______________________________________________________________________________________**")
         | 
| 247 | 
            +
                    st.markdown("**Spatial Entities List**")
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    # 初始化一个空 DataFrame
         | 
| 250 | 
            +
                    df = pd.DataFrame(columns=['Sr.', 'entity', 'label', 'Map', 'GEOJson'])
         | 
| 251 | 
            +
                    rows = []  # 用于存储所有行
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    for ent in doc.ents:
         | 
| 254 | 
            +
                        url_map = BASE_URL + "Tagger?map=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
         | 
| 255 | 
            +
                        print(url_map, 'uuurrr')
         | 
| 256 | 
            +
                        print(ent._.rse_id, 'pppp')
         | 
| 257 | 
            +
                        url_json = BASE_URL + "Tagger?geojson=true&type=" + types + "&model=" + model + "&text=" + text + "&entity=" + ent._.rse_id
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                        # 创建新行
         | 
| 260 | 
            +
                        new_row = {
         | 
| 261 | 
            +
                            'Sr.': len(rows) + 1,
         | 
| 262 | 
            +
                            'entity': ent.text,
         | 
| 263 | 
            +
                            'label': ent.label_,
         | 
| 264 | 
            +
                            'Map': f'<a target="_self" href="{url_map}">View</a>',
         | 
| 265 | 
            +
                            'GEOJson': f'<a target="_self" href="{url_json}">View</a>'
         | 
| 266 | 
            +
                        }
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                        rows.append(new_row)  # 将新行添加到列表中
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    # 将所有行转为 DataFrame
         | 
| 271 | 
            +
                    df = pd.DataFrame(rows)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    # 使用 Streamlit 显示 HTML 表格
         | 
| 274 | 
            +
                    st.write(df.to_html(escape=False, index=False), unsafe_allow_html=True)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                # params = st.experimental_get_query_params()
         | 
| 277 | 
            +
                # params = st.query_params
         | 
| 278 | 
            +
                # ase, level_1, level_2, level_3 = geoutil.get_ent(params["entity"][0])
         | 
| 279 | 
            +
                # print(geoutil.get_ent(params), 'ppppp')
         | 
| 280 | 
            +
             | 
| 281 | 
            +
            def set_header():       # tetis Geospacy LOGO
         | 
| 282 | 
            +
                LOGO_IMAGE = "title.jpg"
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                st.markdown(
         | 
| 285 | 
            +
                    """
         | 
| 286 | 
            +
                    <style>
         | 
| 287 | 
            +
                    .container {
         | 
| 288 | 
            +
                        display: flex;
         | 
| 289 | 
            +
                    }
         | 
| 290 | 
            +
                    .logo-text {
         | 
| 291 | 
            +
                        font-weight:700 !important;
         | 
| 292 | 
            +
                        font-size:50px !important;
         | 
| 293 | 
            +
                        color: #52aee3 !important;
         | 
| 294 | 
            +
                        padding-left: 10px !important;
         | 
| 295 | 
            +
                    }
         | 
| 296 | 
            +
                    .logo-img {
         | 
| 297 | 
            +
                        float:right;
         | 
| 298 | 
            +
                        width: 10%;
         | 
| 299 | 
            +
                        height: 10%;
         | 
| 300 | 
            +
                    }
         | 
| 301 | 
            +
                    </style>
         | 
| 302 | 
            +
                    """,
         | 
| 303 | 
            +
                    unsafe_allow_html=True
         | 
| 304 | 
            +
                )
         | 
| 305 | 
            +
                st.markdown(
         | 
| 306 | 
            +
                    f"""
         | 
| 307 | 
            +
                    <div class="container">
         | 
| 308 | 
            +
                        <img class="logo-img" src="data:image/png;base64,{base64.b64encode(open(LOGO_IMAGE, "rb").read()).decode()}">
         | 
| 309 | 
            +
                        <p class="logo-text">SpatialParse</p>
         | 
| 310 | 
            +
                    </div>
         | 
| 311 | 
            +
                    """,
         | 
| 312 | 
            +
                    unsafe_allow_html=True
         | 
| 313 | 
            +
                )
         | 
| 314 | 
            +
             | 
| 315 | 
            +
             | 
| 316 | 
            +
            def set_side_menu():
         | 
| 317 | 
            +
                global gpe_selected, loc_selected, rse_selected, model, types
         | 
| 318 | 
            +
                types = ""
         | 
| 319 | 
            +
                params = st.experimental_get_query_params()
         | 
| 320 | 
            +
                st.sidebar.markdown("## Deployment Method")
         | 
| 321 | 
            +
                st.sidebar.markdown("You can select the deployment method for the model.")
         | 
| 322 | 
            +
                deployment_options = ["API", "Local deployment"]
         | 
| 323 | 
            +
                use_local_model = st.sidebar.radio("Choose deployment method:", deployment_options, index=0) == "Local deployment"
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                if use_local_model:
         | 
| 326 | 
            +
                    local_model_path = st.sidebar.text_input("Enter local model path:", "")
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                st.sidebar.markdown("## LLM Model")
         | 
| 329 | 
            +
                st.sidebar.markdown("You can **select** different  *LLM model* powered by API.")
         | 
| 330 | 
            +
                models = ['Llama-3-8B', 'Mistral-7B-0.3', 'Gemma-2-10B', 'GPT-4o', 'Gemini Pro', 'Deepseek-R1', 'en_core_web_sm', 'en_core_web_md', 'en_core_web_lg', 'en_core_web_trf']
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
             | 
| 334 | 
            +
             | 
| 335 | 
            +
                if "model" in params:
         | 
| 336 | 
            +
                    default_ix = models.index(params["model"][0])
         | 
| 337 | 
            +
                else:
         | 
| 338 | 
            +
                    default_ix = models.index('GPT-4o')
         | 
| 339 | 
            +
             | 
| 340 | 
            +
             | 
| 341 | 
            +
             | 
| 342 | 
            +
             | 
| 343 | 
            +
                model = st.sidebar.selectbox('LLM Model', models, index=default_ix)
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                st.sidebar.markdown("## Spatial Entity Labels")
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                st.sidebar.markdown("Please **Mark** the Spatial Entities you want to extract.")
         | 
| 348 | 
            +
                tpes = ""
         | 
| 349 | 
            +
                if "type" in params:
         | 
| 350 | 
            +
                    tpes = params['type'][0]
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                st.sidebar.markdown("### Absolute Spatial Entity:")
         | 
| 353 | 
            +
                if "g" in tpes:
         | 
| 354 | 
            +
                    gpe = st.sidebar.checkbox('GPE', value=True)
         | 
| 355 | 
            +
                else:
         | 
| 356 | 
            +
                    gpe = st.sidebar.checkbox('GPE')
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                if "l" in tpes:
         | 
| 359 | 
            +
                    loc = st.sidebar.checkbox('LOC', value=True)
         | 
| 360 | 
            +
                else:
         | 
| 361 | 
            +
                    loc = st.sidebar.checkbox('LOC')
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                st.sidebar.markdown("### Relative Spatial Entity:")
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                if "r" in tpes:
         | 
| 366 | 
            +
                    rse = st.sidebar.checkbox('RSE', value=True)
         | 
| 367 | 
            +
                else:
         | 
| 368 | 
            +
                    rse = st.sidebar.checkbox('RSE')
         | 
| 369 | 
            +
                if (gpe):
         | 
| 370 | 
            +
                    gpe_selected = "GPE"
         | 
| 371 | 
            +
                    types += "g"
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                if (loc):
         | 
| 374 | 
            +
                    loc_selected = "LOC"
         | 
| 375 | 
            +
                    types += "l"
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                if (rse):
         | 
| 378 | 
            +
                    rse_selected = "RSE"
         | 
| 379 | 
            +
                    types += "r"
         | 
| 380 | 
            +
             | 
| 381 | 
            +
             | 
| 382 | 
            +
             | 
| 383 | 
            +
             | 
| 384 | 
            +
             | 
| 385 | 
            +
            def main():
         | 
| 386 | 
            +
                global gpe_selected, loc_selected, rse_selected, model
         | 
| 387 | 
            +
                #print(displacy.templates.TPL_ENT)
         | 
| 388 | 
            +
                set_header()
         | 
| 389 | 
            +
                set_side_menu()
         | 
| 390 | 
            +
             | 
| 391 | 
            +
             | 
| 392 | 
            +
                text = set_input()
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                if(text is not None):
         | 
| 395 | 
            +
                    extract_spatial_entities(text)
         | 
| 396 | 
            +
                elif "text" in st.session_state:
         | 
| 397 | 
            +
                    text = st.session_state.text
         | 
| 398 | 
            +
                    extract_spatial_entities(text)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
             | 
| 401 | 
            +
            if __name__ == '__main__':
         | 
| 402 | 
            +
                main()
         | 
| 403 | 
            +
             | 
| 404 | 
            +
             |