Upload 2 files
Browse files- app.py +108 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter
|
| 3 |
+
from diffusers.utils import export_to_video
|
| 4 |
+
from flask import Flask, request, jsonify
|
| 5 |
+
from flask_cors import CORS
|
| 6 |
+
import base64
|
| 7 |
+
import tempfile
|
| 8 |
+
import os
|
| 9 |
+
import threading
|
| 10 |
+
|
| 11 |
+
app = Flask(__name__)
|
| 12 |
+
CORS(app)
|
| 13 |
+
|
| 14 |
+
pipe = None
|
| 15 |
+
app.config['temp_response'] = None
|
| 16 |
+
app.config['generation_thread'] = None
|
| 17 |
+
|
| 18 |
+
def download_pipeline():
|
| 19 |
+
global pipe
|
| 20 |
+
try:
|
| 21 |
+
print('Downloading the model weights')
|
| 22 |
+
# Download and initialize the animation pipeline
|
| 23 |
+
adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=torch.float16)
|
| 24 |
+
pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16)
|
| 25 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
|
| 26 |
+
pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora")
|
| 27 |
+
pipe.set_adapters(["lcm-lora"], [0.8])
|
| 28 |
+
pipe.enable_vae_slicing()
|
| 29 |
+
pipe.enable_model_cpu_offload()
|
| 30 |
+
return True
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error downloading pipeline: {e}")
|
| 33 |
+
return False
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def generate_and_export_animation(prompt):
|
| 37 |
+
global pipe
|
| 38 |
+
|
| 39 |
+
# Ensure the animation pipeline is initialized
|
| 40 |
+
if pipe is None:
|
| 41 |
+
if not download_pipeline():
|
| 42 |
+
return None, "Failed to initialize animation pipeline"
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
# Generate animation frames
|
| 46 |
+
print('Generating Video frames')
|
| 47 |
+
output = pipe(
|
| 48 |
+
prompt=prompt,
|
| 49 |
+
negative_prompt="bad quality, worse quality, low resolution, blur",
|
| 50 |
+
num_frames=16,
|
| 51 |
+
guidance_scale=2.0,
|
| 52 |
+
num_inference_steps=6
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Export frames to a temporary video file
|
| 56 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
| 57 |
+
temp_video_path = temp_file.name
|
| 58 |
+
print('temp_video_path', temp_video_path)
|
| 59 |
+
export_to_video(output.frames[0], temp_video_path)
|
| 60 |
+
|
| 61 |
+
with open(temp_video_path, 'rb') as video_file:
|
| 62 |
+
video_binary = video_file.read()
|
| 63 |
+
|
| 64 |
+
video_base64 = base64.b64encode(video_binary).decode('utf-8')
|
| 65 |
+
os.remove(temp_video_path)
|
| 66 |
+
response_data = {'video_base64': '','status':None}
|
| 67 |
+
response_data['video_base64'] = video_base64
|
| 68 |
+
return response_data
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error generating animation: {e}")
|
| 72 |
+
return None, "Failed to generate animation"
|
| 73 |
+
|
| 74 |
+
def background(prompt):
|
| 75 |
+
with app.app_context():
|
| 76 |
+
temp_response = generate_and_export_animation(prompt)
|
| 77 |
+
json_content = temp_response.get_json()
|
| 78 |
+
app.config['temp_response'] = json_content
|
| 79 |
+
|
| 80 |
+
@app.route('/run', methods=['POST'])
|
| 81 |
+
def handle_animation_request():
|
| 82 |
+
|
| 83 |
+
prompt = request.form.get('prompt')
|
| 84 |
+
if prompt:
|
| 85 |
+
generation_thread = threading.Thread(target=background, args=(prompt,))
|
| 86 |
+
app.config['generation_thread'] = generation_thread
|
| 87 |
+
generation_thread.start()
|
| 88 |
+
response_data = {"message": "Video generation started", "process_id": generation_thread.ident}
|
| 89 |
+
|
| 90 |
+
return jsonify(response_data)
|
| 91 |
+
else:
|
| 92 |
+
return jsonify({"message": "Please provide a valid text prompt."}), 400
|
| 93 |
+
|
| 94 |
+
@app.route('/status', methods=['GET'])
|
| 95 |
+
def check_animation_status():
|
| 96 |
+
process_id = request.args.get('process_id',None)
|
| 97 |
+
|
| 98 |
+
if process_id:
|
| 99 |
+
generation_thread = app.config.get('generation_thread')
|
| 100 |
+
if generation_thread and generation_thread.is_alive():
|
| 101 |
+
return jsonify({"status": "in_progress"}), 200
|
| 102 |
+
elif app.config.get('temp_response'):
|
| 103 |
+
app.config['temp_response']['status'] = 'completed'
|
| 104 |
+
final_response = app.config['temp_response']
|
| 105 |
+
return jsonify(final_response)
|
| 106 |
+
|
| 107 |
+
if __name__ == '__main__':
|
| 108 |
+
app.run(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
flask_cors
|
| 3 |
+
diffusers
|
| 4 |
+
peft
|
| 5 |
+
torch
|
| 6 |
+
gunicorn
|