Delete app.py
Browse files
app.py
DELETED
@@ -1,417 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import spaces
|
4 |
-
import json
|
5 |
-
import re
|
6 |
-
import random
|
7 |
-
import numpy as np
|
8 |
-
from gradio_client import Client, handle_file
|
9 |
-
hf_token = os.environ.get("HF_TOKEN")
|
10 |
-
|
11 |
-
MAX_SEED = np.iinfo(np.int32).max
|
12 |
-
|
13 |
-
def check_api(model_name):
|
14 |
-
if model_name == "MAGNet":
|
15 |
-
try :
|
16 |
-
client = Client("fffiloni/MAGNet")
|
17 |
-
return "api ready"
|
18 |
-
except :
|
19 |
-
return "api not ready yet"
|
20 |
-
elif model_name == "AudioLDM-2":
|
21 |
-
try :
|
22 |
-
client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
|
23 |
-
return "api ready"
|
24 |
-
except :
|
25 |
-
return "api not ready yet"
|
26 |
-
elif model_name == "Riffusion":
|
27 |
-
try :
|
28 |
-
client = Client("fffiloni/spectrogram-to-music")
|
29 |
-
return "api ready"
|
30 |
-
except :
|
31 |
-
return "api not ready yet"
|
32 |
-
elif model_name == "Mustango":
|
33 |
-
try :
|
34 |
-
client = Client("fffiloni/mustango-API", hf_token=hf_token)
|
35 |
-
return "api ready"
|
36 |
-
except :
|
37 |
-
return "api not ready yet"
|
38 |
-
elif model_name == "MusicGen":
|
39 |
-
try :
|
40 |
-
client = Client("https://facebook-musicgen.hf.space/")
|
41 |
-
return "api ready"
|
42 |
-
except :
|
43 |
-
return "api not ready yet"
|
44 |
-
elif model_name == "Stable Audio Open":
|
45 |
-
try:
|
46 |
-
client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
|
47 |
-
return "api ready"
|
48 |
-
except:
|
49 |
-
return "api not ready yet"
|
50 |
-
|
51 |
-
|
52 |
-
from moviepy.editor import VideoFileClip
|
53 |
-
from moviepy.audio.AudioClip import AudioClip
|
54 |
-
|
55 |
-
def extract_audio(video_in):
|
56 |
-
input_video = video_in
|
57 |
-
output_audio = 'audio.wav'
|
58 |
-
|
59 |
-
# Open the video file and extract the audio
|
60 |
-
video_clip = VideoFileClip(input_video)
|
61 |
-
audio_clip = video_clip.audio
|
62 |
-
|
63 |
-
# Save the audio as a .wav file
|
64 |
-
audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files
|
65 |
-
print("Audio extraction complete.")
|
66 |
-
|
67 |
-
return 'audio.wav'
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def get_caption(image_in):
|
72 |
-
kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
|
73 |
-
kosmos2_result = kosmos2_client.predict(
|
74 |
-
image_input=handle_file(image_in),
|
75 |
-
text_input="Detailed",
|
76 |
-
api_name="/generate_predictions"
|
77 |
-
)
|
78 |
-
print(f"KOSMOS2 RETURNS: {kosmos2_result}")
|
79 |
-
|
80 |
-
data = kosmos2_result[1]
|
81 |
-
|
82 |
-
# Extract and combine tokens starting from the second element
|
83 |
-
sentence = ''.join(item['token'] for item in data[1:])
|
84 |
-
|
85 |
-
# Find the last occurrence of "."
|
86 |
-
#last_period_index = full_sentence.rfind('.')
|
87 |
-
|
88 |
-
# Truncate the string up to the last period
|
89 |
-
#truncated_caption = full_sentence[:last_period_index + 1]
|
90 |
-
|
91 |
-
# print(truncated_caption)
|
92 |
-
#print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
|
93 |
-
|
94 |
-
return sentence
|
95 |
-
|
96 |
-
def get_caption_from_MD(image_in):
|
97 |
-
client = Client("https://vikhyatk-moondream1.hf.space/")
|
98 |
-
result = client.predict(
|
99 |
-
image_in, # filepath in 'image' Image component
|
100 |
-
"Describe precisely the image.", # str in 'Question' Textbox component
|
101 |
-
api_name="/answer_question"
|
102 |
-
)
|
103 |
-
print(result)
|
104 |
-
return result
|
105 |
-
|
106 |
-
def get_magnet(prompt):
|
107 |
-
|
108 |
-
client = Client("fffiloni/MAGNet")
|
109 |
-
result = client.predict(
|
110 |
-
model="facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component
|
111 |
-
model_path="", # str in 'Model Path (custom models)' Textbox component
|
112 |
-
text=prompt, # str in 'Input Text' Textbox component
|
113 |
-
temperature=3, # float in 'Temperature' Number component
|
114 |
-
topp=0.9, # float in 'Top-p' Number component
|
115 |
-
max_cfg_coef=10, # float in 'Max CFG coefficient' Number component
|
116 |
-
min_cfg_coef=1, # float in 'Min CFG coefficient' Number component
|
117 |
-
decoding_steps1=20, # float in 'Decoding Steps (stage 1)' Number component
|
118 |
-
decoding_steps2=10, # float in 'Decoding Steps (stage 2)' Number component
|
119 |
-
decoding_steps3=10, # float in 'Decoding Steps (stage 3)' Number component
|
120 |
-
decoding_steps4=10, # float in 'Decoding Steps (stage 4)' Number component
|
121 |
-
span_score="prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component
|
122 |
-
api_name="/predict_full"
|
123 |
-
)
|
124 |
-
print(result)
|
125 |
-
return result[1]
|
126 |
-
|
127 |
-
def get_audioldm(prompt):
|
128 |
-
client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
|
129 |
-
seed = random.randint(0, MAX_SEED)
|
130 |
-
result = client.predict(
|
131 |
-
text=prompt, # str in 'Input text' Textbox component
|
132 |
-
negative_prompt="Low quality.", # str in 'Negative prompt' Textbox component
|
133 |
-
duration=10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
|
134 |
-
guidance_scale=6.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
|
135 |
-
random_seed=seed, # int | float in 'Seed' Number component
|
136 |
-
n_candidates=3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
|
137 |
-
api_name="/text2audio"
|
138 |
-
)
|
139 |
-
print(result)
|
140 |
-
|
141 |
-
return result
|
142 |
-
|
143 |
-
def get_riffusion(prompt):
|
144 |
-
client = Client("fffiloni/spectrogram-to-music")
|
145 |
-
result = client.predict(
|
146 |
-
prompt=prompt, # str in 'Musical prompt' Textbox component
|
147 |
-
negative_prompt="", # str in 'Negative prompt' Textbox component
|
148 |
-
audio_input=None, # filepath in 'parameter_4' Audio component
|
149 |
-
duration=10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
|
150 |
-
api_name="/predict"
|
151 |
-
)
|
152 |
-
print(result)
|
153 |
-
return result[1]
|
154 |
-
|
155 |
-
def get_mustango(prompt):
|
156 |
-
client = Client("fffiloni/mustango-API", hf_token=hf_token)
|
157 |
-
result = client.predict(
|
158 |
-
prompt=prompt, # str in 'Prompt' Textbox component
|
159 |
-
steps=200, # float (numeric value between 100 and 200) in 'Steps' Slider component
|
160 |
-
guidance=6, # float (numeric value between 1 and 10) in 'Guidance Scale' Slider component
|
161 |
-
api_name="/predict"
|
162 |
-
)
|
163 |
-
print(result)
|
164 |
-
return result
|
165 |
-
|
166 |
-
def get_musicgen(prompt):
|
167 |
-
client = Client("https://facebook-musicgen.hf.space/")
|
168 |
-
result = client.predict(
|
169 |
-
prompt, # str in 'Describe your music' Textbox component
|
170 |
-
None, # str (filepath or URL to file) in 'File' Audio component
|
171 |
-
fn_index=0
|
172 |
-
)
|
173 |
-
print(result)
|
174 |
-
return result[1]
|
175 |
-
|
176 |
-
def get_stable_audio_open(prompt):
|
177 |
-
client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
|
178 |
-
result = client.predict(
|
179 |
-
prompt=prompt,
|
180 |
-
seconds_total=10,
|
181 |
-
steps=100,
|
182 |
-
cfg_scale=7,
|
183 |
-
api_name="/predict"
|
184 |
-
)
|
185 |
-
print(result)
|
186 |
-
return result
|
187 |
-
|
188 |
-
import re
|
189 |
-
import torch
|
190 |
-
from transformers import pipeline
|
191 |
-
|
192 |
-
zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
|
193 |
-
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
194 |
-
|
195 |
-
pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto")
|
196 |
-
|
197 |
-
standard_sys = f"""
|
198 |
-
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
199 |
-
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model.
|
200 |
-
For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description.
|
201 |
-
Immediately STOP after that. It should be EXACTLY in this format:
|
202 |
-
"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle"
|
203 |
-
"""
|
204 |
-
|
205 |
-
mustango_sys = f"""
|
206 |
-
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
|
207 |
-
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model, you MUST include chords progression.
|
208 |
-
For example, if a user says, "a painting of three old women having tea party", provide immediately a musical prompt corresponding to the image description.
|
209 |
-
Immediately STOP after that. It should be EXACTLY in this format:
|
210 |
-
"The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor."
|
211 |
-
"""
|
212 |
-
|
213 |
-
@spaces.GPU(enable_queue=True)
|
214 |
-
def get_musical_prompt(user_prompt, chosen_model):
|
215 |
-
|
216 |
-
"""
|
217 |
-
if chosen_model == "Mustango" :
|
218 |
-
agent_maker_sys = standard_sys
|
219 |
-
else :
|
220 |
-
agent_maker_sys = standard_sys
|
221 |
-
"""
|
222 |
-
agent_maker_sys = standard_sys
|
223 |
-
|
224 |
-
instruction = f"""
|
225 |
-
<|system|>
|
226 |
-
{agent_maker_sys}</s>
|
227 |
-
<|user|>
|
228 |
-
"""
|
229 |
-
|
230 |
-
prompt = f"{instruction.strip()}\n{user_prompt}</s>"
|
231 |
-
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
232 |
-
pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
|
233 |
-
cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
|
234 |
-
|
235 |
-
print(f"SUGGESTED Musical prompt: {cleaned_text}")
|
236 |
-
return cleaned_text.lstrip("\n")
|
237 |
-
|
238 |
-
def infer(image_in, chosen_model, api_status):
|
239 |
-
if image_in == None :
|
240 |
-
raise gr.Error("Please provide an image input")
|
241 |
-
|
242 |
-
if chosen_model == [] :
|
243 |
-
raise gr.Error("Please pick a model")
|
244 |
-
|
245 |
-
if api_status == "api not ready yet" :
|
246 |
-
raise gr.Error("This model is not ready yet, you can pick another one instead :)")
|
247 |
-
|
248 |
-
gr.Info("Getting image caption with Kosmos-2...")
|
249 |
-
user_prompt = get_caption(image_in)
|
250 |
-
#user_prompt = get_caption_from_MD(image_in)
|
251 |
-
|
252 |
-
gr.Info("Building a musical prompt according to the image caption ...")
|
253 |
-
musical_prompt = get_musical_prompt(user_prompt, chosen_model)
|
254 |
-
|
255 |
-
if chosen_model == "MAGNet" :
|
256 |
-
gr.Info("Now calling MAGNet for music...")
|
257 |
-
music_o = get_magnet(musical_prompt)
|
258 |
-
elif chosen_model == "AudioLDM-2" :
|
259 |
-
gr.Info("Now calling AudioLDM-2 for music...")
|
260 |
-
music_o = get_audioldm(musical_prompt)
|
261 |
-
elif chosen_model == "Riffusion" :
|
262 |
-
gr.Info("Now calling Riffusion for music...")
|
263 |
-
music_o = get_riffusion(musical_prompt)
|
264 |
-
elif chosen_model == "Mustango" :
|
265 |
-
gr.Info("Now calling Mustango for music...")
|
266 |
-
music_o = get_mustango(musical_prompt)
|
267 |
-
elif chosen_model == "MusicGen" :
|
268 |
-
gr.Info("Now calling MusicGen for music...")
|
269 |
-
music_o = get_musicgen(musical_prompt)
|
270 |
-
elif chosen_model == "Stable Audio Open" :
|
271 |
-
gr.Info("Now calling Stable Audio Open for music...")
|
272 |
-
music_o = get_stable_audio_open(musical_prompt)
|
273 |
-
|
274 |
-
return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
|
275 |
-
|
276 |
-
def retry(chosen_model, caption):
|
277 |
-
musical_prompt = caption
|
278 |
-
music_o = None
|
279 |
-
|
280 |
-
if chosen_model == "MAGNet" :
|
281 |
-
gr.Info("Now calling MAGNet for music...")
|
282 |
-
music_o = get_magnet(musical_prompt)
|
283 |
-
elif chosen_model == "AudioLDM-2" :
|
284 |
-
gr.Info("Now calling AudioLDM-2 for music...")
|
285 |
-
music_o = get_audioldm(musical_prompt)
|
286 |
-
elif chosen_model == "Riffusion" :
|
287 |
-
gr.Info("Now calling Riffusion for music...")
|
288 |
-
music_o = get_riffusion(musical_prompt)
|
289 |
-
elif chosen_model == "Mustango" :
|
290 |
-
gr.Info("Now calling Mustango for music...")
|
291 |
-
music_o = get_mustango(musical_prompt)
|
292 |
-
elif chosen_model == "MusicGen" :
|
293 |
-
gr.Info("Now calling MusicGen for music...")
|
294 |
-
music_o = get_musicgen(musical_prompt)
|
295 |
-
elif chosen_model == "Stable Audio Open" :
|
296 |
-
gr.Info("Now calling Stable Audio Open for music...")
|
297 |
-
music_o = get_stable_audio_open(musical_prompt)
|
298 |
-
|
299 |
-
return music_o
|
300 |
-
|
301 |
-
demo_title = "Image to Music V2"
|
302 |
-
description = "Get music from a picture, compare text-to-music models"
|
303 |
-
|
304 |
-
css = """
|
305 |
-
#col-container {
|
306 |
-
margin: 0 auto;
|
307 |
-
max-width: 980px;
|
308 |
-
text-align: left;
|
309 |
-
}
|
310 |
-
#inspi-prompt textarea {
|
311 |
-
font-size: 20px;
|
312 |
-
line-height: 24px;
|
313 |
-
font-weight: 600;
|
314 |
-
}
|
315 |
-
"""
|
316 |
-
|
317 |
-
with gr.Blocks(css=css) as demo:
|
318 |
-
|
319 |
-
with gr.Column(elem_id="col-container"):
|
320 |
-
|
321 |
-
gr.HTML(f"""
|
322 |
-
<h2 style="text-align: center;">{demo_title}</h2>
|
323 |
-
<p style="text-align: center;">{description}</p>
|
324 |
-
""")
|
325 |
-
|
326 |
-
with gr.Row():
|
327 |
-
|
328 |
-
with gr.Column():
|
329 |
-
image_in = gr.Image(
|
330 |
-
label = "Image reference",
|
331 |
-
type = "filepath",
|
332 |
-
elem_id = "image-in"
|
333 |
-
)
|
334 |
-
|
335 |
-
with gr.Row():
|
336 |
-
|
337 |
-
chosen_model = gr.Dropdown(
|
338 |
-
label = "Choose a model",
|
339 |
-
choices = [
|
340 |
-
#"MAGNet",
|
341 |
-
"AudioLDM-2",
|
342 |
-
"Riffusion",
|
343 |
-
"Mustango",
|
344 |
-
#"MusicGen",
|
345 |
-
"Stable Audio Open"
|
346 |
-
],
|
347 |
-
value = None,
|
348 |
-
filterable = False
|
349 |
-
)
|
350 |
-
|
351 |
-
check_status = gr.Textbox(
|
352 |
-
label="API status",
|
353 |
-
interactive=False
|
354 |
-
)
|
355 |
-
|
356 |
-
submit_btn = gr.Button("Make music from my pic !")
|
357 |
-
|
358 |
-
gr.Examples(
|
359 |
-
examples = [
|
360 |
-
["examples/ocean_poet.jpeg"],
|
361 |
-
["examples/jasper_horace.jpeg"],
|
362 |
-
["examples/summer.jpeg"],
|
363 |
-
["examples/mona_diner.png"],
|
364 |
-
["examples/monalisa.png"],
|
365 |
-
["examples/santa.png"],
|
366 |
-
["examples/winter_hiking.png"],
|
367 |
-
["examples/teatime.jpeg"],
|
368 |
-
["examples/news_experts.jpeg"]
|
369 |
-
],
|
370 |
-
fn = infer,
|
371 |
-
inputs = [image_in, chosen_model],
|
372 |
-
examples_per_page = 4
|
373 |
-
)
|
374 |
-
|
375 |
-
with gr.Column():
|
376 |
-
|
377 |
-
caption = gr.Textbox(
|
378 |
-
label = "Inspirational musical prompt",
|
379 |
-
interactive = False,
|
380 |
-
elem_id = "inspi-prompt"
|
381 |
-
)
|
382 |
-
|
383 |
-
retry_btn = gr.Button("Retry with edited prompt", visible=False)
|
384 |
-
|
385 |
-
result = gr.Audio(
|
386 |
-
label = "Music"
|
387 |
-
)
|
388 |
-
|
389 |
-
|
390 |
-
chosen_model.change(
|
391 |
-
fn = check_api,
|
392 |
-
inputs = chosen_model,
|
393 |
-
outputs = check_status,
|
394 |
-
queue = False
|
395 |
-
)
|
396 |
-
|
397 |
-
retry_btn.click(
|
398 |
-
fn = retry,
|
399 |
-
inputs = [chosen_model, caption],
|
400 |
-
outputs = [result]
|
401 |
-
)
|
402 |
-
|
403 |
-
submit_btn.click(
|
404 |
-
fn = infer,
|
405 |
-
inputs = [
|
406 |
-
image_in,
|
407 |
-
chosen_model,
|
408 |
-
check_status
|
409 |
-
],
|
410 |
-
outputs =[
|
411 |
-
caption,
|
412 |
-
retry_btn,
|
413 |
-
result
|
414 |
-
]
|
415 |
-
)
|
416 |
-
|
417 |
-
demo.queue(max_size=16).launch(show_api=False, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|