TelcomRecommendation / recommendation_explainer.py
SoumyaJ's picture
Upload 5 files
d1c2c35 verified
from langchain_groq import ChatGroq
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from dotenv import load_dotenv
import os
load_dotenv()
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
model = ChatGroq(model="qwen/qwen3-32b")
prompt_template = PromptTemplate(template = '''You are a Mobile Plan Analyzer tool that evaluates a user's current mobile plan against their usage patterns and a recommended plan, and generates a clear, one-sentence justification highlighting improved value, efficiency, or suitability—tailored for quick stakeholder insights.
The user info is : {user_data}''', input_variables=["user_data"])
parser = StrOutputParser()
def explain_recommendation(user_id, df):
if user_id and user_id in df['user_id'].values:
user_data = df[df['user_id'] == user_id].iloc[0]
chain = prompt_template | model | parser
response = chain.invoke({"user_data": user_data})
if isinstance(response, str) and "</think>" in response:
return response.split("</think>")[1].replace("\n","").strip()
else:
return response
else:
raise ValueError("User ID not found in the dataset.")