Update tools.py
Browse files
tools.py
CHANGED
@@ -1,130 +1,133 @@
|
|
1 |
-
from langchain_astradb import AstraDBVectorStore
|
2 |
-
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
3 |
-
from langchain.tools.retriever import create_retriever_tool
|
4 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
-
import os
|
6 |
-
import pandas as pd
|
7 |
-
import requests
|
8 |
-
import yaml
|
9 |
-
|
10 |
-
HOLIDAY_KEYWORDS ={
|
11 |
-
"christmas": ["christmas", "santa", "carol", "holiday"]}
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
#
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
self.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
schedule_date
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
if
|
103 |
-
documents.extend(
|
104 |
-
|
105 |
-
if
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
for
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
#
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
1 |
+
from langchain_astradb import AstraDBVectorStore
|
2 |
+
from langchain_huggingface import HuggingFaceEndpointEmbeddings
|
3 |
+
from langchain.tools.retriever import create_retriever_tool
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
import yaml
|
9 |
+
|
10 |
+
HOLIDAY_KEYWORDS ={
|
11 |
+
"christmas": ["christmas", "santa", "carol", "holiday"]}
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class RetrievalTool:
|
16 |
+
def __init__(self):
|
17 |
+
# self.embeddings = HuggingFaceEndpointEmbeddings(
|
18 |
+
# model= "sentence-transformers/all-MiniLM-L6-v2",
|
19 |
+
# task="feature-extraction",
|
20 |
+
# huggingfacehub_api_token= os.environ["HF_TOKEN"])
|
21 |
+
|
22 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
23 |
+
|
24 |
+
self.vector_store = AstraDBVectorStore(collection_name="program_astra",
|
25 |
+
embedding=self.embeddings,
|
26 |
+
api_endpoint=os.environ["ASTRA_DB_API_ENDPOINT"],
|
27 |
+
token= os.environ["ASTRA_DB_APPLICATION_TOKEN"],
|
28 |
+
namespace= os.environ["ASTRA_DB_NAMESPACE"])
|
29 |
+
|
30 |
+
self.calendarKey = os.environ["CALENDARIFIC_API_KEY"]
|
31 |
+
self.config = yaml.safe_load(open("config.yaml"))
|
32 |
+
|
33 |
+
def get_HolidayInCalendar(self,scheduleDate:str):
|
34 |
+
schedule_date = pd.to_datetime(scheduleDate, errors='coerce')
|
35 |
+
if schedule_date is pd.NaT:
|
36 |
+
raise ValueError("Invalid date format. Please use YYYY-MM-DD.")
|
37 |
+
schedule_date = schedule_date.date()
|
38 |
+
|
39 |
+
year = schedule_date.year
|
40 |
+
month = schedule_date.month
|
41 |
+
country = "US"
|
42 |
+
holidaylist = []
|
43 |
+
|
44 |
+
endpoint_url = f"https://calendarific.com/api/v2/holidays?api_key={self.calendarKey}&country={country}&year={year}&month={month}"
|
45 |
+
response = requests.get(endpoint_url)
|
46 |
+
eventName = ""
|
47 |
+
if response.status_code == 200:
|
48 |
+
holidays = response.json()['response']['holidays']
|
49 |
+
holidaylist = list(map(lambda x: x['description'],holidays))
|
50 |
+
|
51 |
+
if any("Christmas" in sentence for sentence in holidaylist):
|
52 |
+
eventName = "christmas"
|
53 |
+
elif any("New year" in sentence for sentence in holidaylist):
|
54 |
+
eventName = "new year"
|
55 |
+
return eventName
|
56 |
+
else:
|
57 |
+
return ""
|
58 |
+
|
59 |
+
#This is what will be coming from the front end to populate genre and schedule date for astra filtering
|
60 |
+
def buildDataToIncludeHolidayEvents(self, genre:str, scheduleDate:str):
|
61 |
+
if not genre or not scheduleDate:
|
62 |
+
raise ValueError("Genre and schedule date are required.")
|
63 |
+
genre_data = genre.strip().lower()
|
64 |
+
|
65 |
+
holidayEvent = self.get_HolidayInCalendar(scheduleDate)
|
66 |
+
|
67 |
+
return genre_data, holidayEvent
|
68 |
+
|
69 |
+
|
70 |
+
def get_retrievers(self, user_genres: list, holiday_event: str = None):
|
71 |
+
astraConfig = self.config["astra_db"]
|
72 |
+
astra_filter_genre = {"genre": {"$in": user_genres}}
|
73 |
+
|
74 |
+
if holiday_event:
|
75 |
+
keywords = HOLIDAY_KEYWORDS.get(holiday_event.lower(), [])
|
76 |
+
|
77 |
+
astra_filter_holiday = {
|
78 |
+
"$or": [
|
79 |
+
{"synopsis": {"$in": keywords}}
|
80 |
+
]}
|
81 |
+
|
82 |
+
retriever_holiday = self.vector_store.as_retriever(search_kwargs={"filter": astra_filter_holiday, "k": astraConfig["holidaySearch"]["k"]})
|
83 |
+
retriever_genre = self.vector_store.as_retriever(search_kwargs={"filter": astra_filter_genre, "k": astraConfig["genreSearchWithEvent"]["k"]})
|
84 |
+
|
85 |
+
return retriever_genre,retriever_holiday
|
86 |
+
|
87 |
+
else:
|
88 |
+
retriever = self.vector_store.as_retriever(search_kwargs={"filter": astra_filter_genre, "k": astraConfig["genreSearchWithoutEvent"]["k"]})
|
89 |
+
return retriever, None
|
90 |
+
|
91 |
+
#This is the function to pull the relevant docs based on the genre and date
|
92 |
+
def get_relevant_programmes(self, genre: str, scheduleDate: str)-> pd.DataFrame:
|
93 |
+
"""Retrieves relevant documents from the vector store based on the genre and date."""
|
94 |
+
if not self.vector_store or not self.embeddings:
|
95 |
+
raise ValueError("Vector store or embeddings not initialized.")
|
96 |
+
|
97 |
+
genre, holidayEvents = self.buildDataToIncludeHolidayEvents(genre, scheduleDate)
|
98 |
+
|
99 |
+
retriever_genre, retriever_holiday = self.get_retrievers([genre], holidayEvents)
|
100 |
+
documents= []
|
101 |
+
|
102 |
+
if retriever_holiday:
|
103 |
+
documents.extend(retriever_holiday.invoke(holidayEvents))
|
104 |
+
|
105 |
+
if retriever_genre:
|
106 |
+
documents.extend(retriever_genre.invoke(f"{genre} genre based programs"))
|
107 |
+
|
108 |
+
if not documents:
|
109 |
+
raise ValueError("No relevant documents found.")
|
110 |
+
program_df = pd.DataFrame([doc.metadata for doc in documents])
|
111 |
+
|
112 |
+
formatted_entries = []
|
113 |
+
for _, row in program_df.iterrows():
|
114 |
+
title = row['programme_title']
|
115 |
+
duration = row['duration']
|
116 |
+
rating = row['ratings']
|
117 |
+
synopsis = " ".join(row['synopsis']) if isinstance(row['synopsis'], list) else str(row['synopsis'])
|
118 |
+
genre = " ".join(row['genre']) if isinstance(row['genre'], list) else str(row['genre'])
|
119 |
+
|
120 |
+
formatted_entries.append(
|
121 |
+
f"programme_title: {title}, duration: {duration}, ratings: {rating}, synopsis: {synopsis}, genre: {genre}"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Join all formatted strings with newline
|
125 |
+
docs = "\n".join(formatted_entries)
|
126 |
+
return docs, holidayEvents
|
127 |
+
|
128 |
+
# if __name__ == "__main__":
|
129 |
+
# tool = RetrievalTool()
|
130 |
+
# tool2 = tool.get_relevant_documents("comedy", "2023-10-25")
|
131 |
+
# print(tool2)
|
132 |
+
|
133 |
+
|