Update app.py
Browse files
app.py
CHANGED
@@ -35,14 +35,15 @@ from PIL import Image
|
|
35 |
from PyPDF2 import PdfFileReader
|
36 |
from pdf2image import convert_from_bytes
|
37 |
import pdfplumber
|
38 |
-
|
39 |
import pdf2image
|
40 |
|
41 |
|
42 |
# NLP Pkgs
|
43 |
from textblob import TextBlob
|
44 |
import spacy
|
45 |
-
|
|
|
46 |
import requests
|
47 |
import cv2
|
48 |
import numpy as np
|
@@ -180,13 +181,13 @@ def main():
|
|
180 |
st.text("Using Hugging Face Transformer, Contrastive Search ..")
|
181 |
output = model.generate(input_ids, max_length=128)
|
182 |
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
if st.checkbox("Mark to better English Text Summarization!"):
|
191 |
#st.title("Summarize Your Text for English only!")
|
192 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|
|
|
35 |
from PyPDF2 import PdfFileReader
|
36 |
from pdf2image import convert_from_bytes
|
37 |
import pdfplumber
|
38 |
+
from line_cor import mark_region
|
39 |
import pdf2image
|
40 |
|
41 |
|
42 |
# NLP Pkgs
|
43 |
from textblob import TextBlob
|
44 |
import spacy
|
45 |
+
import gensim
|
46 |
+
from gensim.summarization import summarize
|
47 |
import requests
|
48 |
import cv2
|
49 |
import numpy as np
|
|
|
181 |
st.text("Using Hugging Face Transformer, Contrastive Search ..")
|
182 |
output = model.generate(input_ids, max_length=128)
|
183 |
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
|
184 |
+
if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
|
185 |
+
st.subheader("Summarize Your Text for English and Bangla Texts!")
|
186 |
+
message = st.text_area("Enter the Text","Type please ..")
|
187 |
+
st.text("Using Gensim Summarizer ..")
|
188 |
+
st.success(mess)
|
189 |
+
summary_result = summarize(text)
|
190 |
+
st.success(summary_result)
|
191 |
if st.checkbox("Mark to better English Text Summarization!"):
|
192 |
#st.title("Summarize Your Text for English only!")
|
193 |
tokenizer = AutoTokenizer.from_pretrained('t5-base')
|