Soumen commited on
Commit
b046f0b
·
1 Parent(s): 333985e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -21
app.py CHANGED
@@ -70,27 +70,6 @@ def main():
70
  This is a Natural Language Processing(NLP) Based Application useful for basic NLP tasks
71
  Named Entity Recognition, Sentiment Analysis, Spell Corrections, Human Level Text Generation, and Summarization
72
  """)
73
- # Entity Extraction
74
- text = st.text_input("Type your text!")
75
- if st.checkbox("Show Named Entities"):
76
- entity_result = entity_analyzer(text)
77
- st.json(entity_result)
78
- # Sentiment Analysis
79
- if st.checkbox("Show Sentiment Analysis"):
80
- blob = TextBlob(text)
81
- result_sentiment = blob.sentiment
82
- st.success(result_sentiment)
83
- #Text Corrections
84
- if st.checkbox("Spell Corrections"):
85
- st.success(TextBlob(text).correct())
86
- if st.checkbox("Text Generation"):
87
- ok = st.button("Generate")
88
- tokenizer, model = load_models()
89
- if ok:
90
- input_ids = tokenizer(text, return_tensors='pt').input_ids
91
- st.text("Using Hugging Face Transformer, Contrastive Search ..")
92
- output = model.generate(input_ids, max_length=128)
93
- st.success(tokenizer.decode(output[0], skip_special_tokens=True))
94
  def change_photo_state():
95
  st.session_state["photo"]="done"
96
  st.subheader("Summary section, feed your image!")
@@ -117,6 +96,25 @@ def main():
117
  #our_image=load_image("image.jpg")
118
  #img = cv2.imread("scholarly_text.jpg")
119
  text = message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  # Summarization
121
  if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
122
  #st.subheader("Summarize Your Text for English and Bangla Texts!")
 
70
  This is a Natural Language Processing(NLP) Based Application useful for basic NLP tasks
71
  Named Entity Recognition, Sentiment Analysis, Spell Corrections, Human Level Text Generation, and Summarization
72
  """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  def change_photo_state():
74
  st.session_state["photo"]="done"
75
  st.subheader("Summary section, feed your image!")
 
96
  #our_image=load_image("image.jpg")
97
  #img = cv2.imread("scholarly_text.jpg")
98
  text = message
99
+ if st.checkbox("Show Named Entities"):
100
+ entity_result = entity_analyzer(text)
101
+ st.json(entity_result)
102
+ # Sentiment Analysis
103
+ if st.checkbox("Show Sentiment Analysis"):
104
+ blob = TextBlob(text)
105
+ result_sentiment = blob.sentiment
106
+ st.success(result_sentiment)
107
+ #Text Corrections
108
+ if st.checkbox("Spell Corrections"):
109
+ st.success(TextBlob(text).correct())
110
+ if st.checkbox("Text Generation"):
111
+ ok = st.button("Generate")
112
+ tokenizer, model = load_models()
113
+ if ok:
114
+ input_ids = tokenizer(text, return_tensors='pt').input_ids
115
+ st.text("Using Hugging Face Transformer, Contrastive Search ..")
116
+ output = model.generate(input_ids, max_length=128)
117
+ st.success(tokenizer.decode(output[0], skip_special_tokens=True))
118
  # Summarization
119
  if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
120
  #st.subheader("Summarize Your Text for English and Bangla Texts!")