Soumen commited on
Commit
a1deaa1
·
1 Parent(s): e64b0ca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -52,7 +52,7 @@ import line_cor
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
- @st.experimental_singleton
56
  def read_pdf(file):
57
  # images=pdf2image.convert_from_path(file)
58
  # # print(type(images))
@@ -86,7 +86,6 @@ def read_pdf(file):
86
  # all_page_text += text + " " #page.extractText()
87
  # return all_page_text
88
  st.title("NLP APPLICATION")
89
- @st.experimental_singleton
90
  #@st.cache_resource(experimental_allow_widgets=True)
91
  def text_analyzer(my_text):
92
  nlp = spacy.load('en_core_web_sm')
@@ -94,12 +93,13 @@ def text_analyzer(my_text):
94
  # tokens = [ token.text for token in docx]
95
  allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
96
  return allData
97
- @st.experimental_singleton
98
  #@st.cache_resource(experimental_allow_widgets=True)
99
  def load_models():
100
  tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
101
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
102
  return tokenizer, model
 
 
103
  # Function For Extracting Entities
104
  @st.experimental_singleton
105
  #@st.cache_resource(experimental_allow_widgets=True)
@@ -111,8 +111,6 @@ def entity_analyzer(my_text):
111
  allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
112
  return allData
113
  def main():
114
- tokenizer = AutoTokenizer.from_pretrained('t5-base')
115
- model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
116
  """ NLP Based Application with Streamlit """
117
  st.markdown("""
118
  #### Description
 
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
+
56
  def read_pdf(file):
57
  # images=pdf2image.convert_from_path(file)
58
  # # print(type(images))
 
86
  # all_page_text += text + " " #page.extractText()
87
  # return all_page_text
88
  st.title("NLP APPLICATION")
 
89
  #@st.cache_resource(experimental_allow_widgets=True)
90
  def text_analyzer(my_text):
91
  nlp = spacy.load('en_core_web_sm')
 
93
  # tokens = [ token.text for token in docx]
94
  allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
95
  return allData
 
96
  #@st.cache_resource(experimental_allow_widgets=True)
97
  def load_models():
98
  tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
99
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
100
  return tokenizer, model
101
+ tokenizer = AutoTokenizer.from_pretrained('t5-base')
102
+ model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
103
  # Function For Extracting Entities
104
  @st.experimental_singleton
105
  #@st.cache_resource(experimental_allow_widgets=True)
 
111
  allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
112
  return allData
113
  def main():
 
 
114
  """ NLP Based Application with Streamlit """
115
  st.markdown("""
116
  #### Description